Toggle light / dark theme

#24 AVATAR TECHNOLOGY DIGEST / Get a Virtual-Reality Punch

Welcome to #24 Avatar Technology Digest! We provide you with the latest news on Technology, Medical Cybernetics and Artificial Intelligence the best way we can. Here are the top stories of the last week!

1) Did you know that Disney does more than shoot box office hits and sell toys to your kids? They also have a very active Research Department that specializes in a variety of applications that can be used throughout the Disney empire. And now another interesting innovation has come out of the Research Department, as they have developed a method for generating those 3D printable robots without the need for time and energy-consuming work at all.

2) Being able to identify problems with a person’s body without subjecting them to invasive procedures is the fantasy of all Star Trek doctors. There’s even a prize offering a fortune to anyone who can effectively recreate the tricorder technology out in the real world. Now, Stanford scientists think that they’ve developed a system that, in time, could be used to spot cancerous tumors from a foot away.

3) Technology is all around us, but what happened to the robots we dreamed of as kids? The ones who could be our friends and members of our family. The robots who were as smart as our smart phone, but could walk and talk and learn and engage with us, in a way no smart phone ever could. We think the Human-like household robot Alpha 2 by Ubtech Robotics could finally be that robot, and with your support, we can make Alpha 2 a reality.

4) Imagine playing a virtual-reality boxing game, complete with a menacing opponent aiming a haymaker at your head. You get your gloves up in time to block the punch, but you feel no impact when it hits, breaking the otherwise immersive experience.
Researchers in Germany have developed Visual reality technology for an armband that lets you feel impact from virtual interactions.

TV Anchor: Olesya Yermakova @olesyayermakova
Video: Vladimir Shlykov www.GetYourMedia.ru
Hair&Make-up: Nataliya Starovoytova

Read more

Disney Research-CMU design tool helps novices design 3D-printable robotic creatures

Digital designs for robotic creatures are shown on the left and the physical prototypes produced via 3-D printing are on the right (credit: Disney Research, Carnegie Melon University)

Now you can design and build your own customized walking robot using a 3-D printer and off-the-shelf servo motors, with the help of a new DYI design tool developed by Disney Research and Carnegie Mellon University.

You can specify the shape, size, and number of legs for your robotic creature, using intuitive editing tools to interactively explore design alternatives. The system takes over much of the non-intuitive and tedious task of planning the motion of the robot, and ensures that your design is capable of moving the way you want and not fall down. Or you can alter your creature’s gait as desired.

Read more

Scientists have found a way to 3D-print embryonic stem cell ‘building blocks’

Pluripotent cells are great, but they can be difficult to steer into growing the way you want. Now scientists have found a new way to create 3D-printed ‘building blocks’ of embryonic stem cells (ESCs), which could be used for growing micro-organs, performing tissue regeneration experiments, testing medication and other biology research purposes.

While bioprinting with ESCs is not entirely new, until recently researchers have only managed to produce two-dimensional sheets of cells. Now a team of scientists from Tsingua University in China and Drexel University in Philadelphia have published a study in Biofabrication, introducing a novel technique for printing a grid-like 3D structure laden with stem cells.

In normal biological conditions ESCs naturally tend to cluster together into spherical ‘embryoid bodies’ – clumps of pluripotent cells which can go on to develop into any type of cell or tissue in the human body.

Read more

3D Printed Guide for Nerve Regeneration successfully tested on Animals, Clinical testing on humans to begins soon

According to the Mayo Clinic, the Nerve regeneration is a complex process, because of its complexity, regrowth of nerves after injury or disease is extremely rare. Nerve damages more often than not are incurable and cause permanent disability, but now the scientist has proved that Advanced 3D printing methods could hold a possible cure for such patients.

To prove the proof of concept, a physically disabled rat was chosen as a test subject. The scientist used a specially designed 3D scanners and 3D Printers to create a custom silicone guide, 3D-printed chemical cues were added to the guide to promote both motor and sensory nerve regeneration. This was then implanted into the rat with surgically grafting it to the cut ends of the nerve. The operation was a extremely successful and the rat showed tremendous improvement in the way it walked within 10 to 12 weeks.

The Lead researcher of this medical breakthrough, Michael McAlpine, a mechanical engineering professor from the University of Minnesota said “This represents an important proof of concept of the 3D printing of custom nerve guides for the regeneration of complex nerve injuries,”

Read more

New 3D Printing Method Produces Uniform Blocks of Embryonic Stem Cells

Researchers from Beijing and Philadelphia develop a method to 3D print embryonic stem cells in highly uniform blocks.

Researchers from Tsinghua University in Beijing, China and Drexel University in the US have developed an extrusion-based 3D printing method to produce highly uniform “blocks” of embryonic stem cells. These blocks are a grid-like 3D structure that was able to demonstrate cell viability and rapid self-renewal while maintaining high pluripotency. Lead author Wei Sun says, “It was really exciting to see that we could grow embryoid body in such a controlled manner. The grown embryoid body is uniform and homogenous, and serves as much better starting point for further tissue growth.”

Other common methods of printing stem cells are either done in 2D or with the “suspension” method, but these methods do not produce cells with the same cell uniformity and homogenous proliferation as that of the 3D method. This new method would enable researchers to perform experiments on tissue regeneration. Another author on the paper, Rui Yao, adds, “Our next step is to find out more about how we can vary the size of the embryoid body by changing the printing and structural parameters, and how the varying the embryoid body size leads to “manufacture” of different cell types.”

Read more

Australian Researchers to 3D Print with Stem Cells for Cranial Reconstruction

The human brain is a fragile and powerful tool, and is also fully dependent on a sturdy skull to keep it secure and intact. Unfortunately for some, there is a need for cranial reconstruction on people who were either born with a skull-related deficiency or critically injured in the head area. 3D printing has shown itself to be a potential game-changer in this regard; we have already witnessed successful titanium mesh skull replacements for one Chinese farmer and even a three-year-old girl born with congenital hydrocephalus. Now, researchers out of Western Australia are developing a new advanced 3D printing method that involves reconstructing the human skull from stem cell cultures.

3dprinting_rph

The project, which is taking place within the Royal Perth Hospital and is being funded by the State Government, will provide their patients with damaged or surgically removed skull fragments with a high-quality cranial reconstruction surgery. The 3D printed stem cell-based skull replacement can potentially increase the success rate and the post-surgical quality of life of patients who require this intensive surgery.

Read more

/* */