Toggle light / dark theme

Did Mars have lakes and rivers during a single period or over separate periods? This is what a recent study published in Nature Geoscience hopes to address as an international team of researchers investigated whether Mars experienced a single event of liquid water on its surface, or many events spread over millions of years. This study has the potential to help scientists better understand the early conditions on Mars and whether these conditions were suitable to support life as we know it.

“Early Mars is a lost world, but it can be reconstructed in great detail if we ask the right questions,” said Dr. Robin Wordsworth, who is a Gordon McKay Professor of Environmental Science and Engineering at Harvard University and a co-author on the study. “This study synthesizes atmospheric chemistry and climate for the first time, to make some striking new predictions – which are testable once we bring Mars rocks back to Earth.”

For the study, the researchers used a series of computer models to simulate how the atmosphere on Mars billions of years ago potentially reacted to surface water-rock interactions and climate changes over time. The goal was to ascertain whether Mars experienced a single event of liquid water on its surface, or a series of events spread over millions of years with periods of dryness in between them.

Dr. Armour, in 1991, discovered that the heart has its “little brain” or “intrinsic cardiac nervous system.” This “heart brain” is composed of approximately 40,000 neurons that are alike neurons in the brain, meaning that the heart has its own nervous system. In addition, the heart communicates with the brain in many methods: neurologically, biochemically, biophysically, and energetically. The vagus nerve, which is 80% afferent, carries information from the heart and other internal organs to the brain. Signals from the “heart brain” redirect to the medulla, hypothalamus, thalamus, and amygdala and the cerebral cortex. Thus, the heart sends more signals to the brain than vice versa. Research has demonstrated that pain perception is modulated by neural pathways and methods targeting the heart such as vagus nerve stimulation and heart-rhythm coherence feedback techniques. The heart is not just a pump. It has its neural network or “little brain.” The methods targeting the heart modulate pain regions in the brain. These methods seem to modulate the key changes that occur in the brain regions and are involved in the cognitive and emotional factors of pain. Thus, the heart is probably a key moderator of pain.

Humanoid robots jam live with humans, blending tech and music.


Humanoid robots are stepping into the spotlight, performing live with human musicians, in an interesting study done by researchers.

The robotic band, which included Oscar, a Robotis-OP3 who played the keyboard, and Polaris, a humanoid who drummed, worked in perfect harmony with its human counterparts.

“The presence of methane is critical to the existence of Titan’s atmosphere,” said Dr. Kelly Miller. “Scientists think an internal source must replenish the methane, or else the atmosphere has a geologically short lifetime.”


Saturn’s largest moon, Titan, is the only moon in the solar system with a dense atmosphere which is comprised of thick hazes of 95 percent nitrogen (N2) and 5 percent methane (NH4) that require radar instruments to see the moon’s surface. But what processes are responsible for keeping this thick atmosphere from escaping to space? This is what a recent study published in Geochimica et Cosmochimica Acta hopes to address as a team of researchers led by the Southwest Research Institute (SwRI) investigated how processes occurring in Titan’s interior could be fueling Titan’s atmosphere, specifically the methane.

“The presence of methane is critical to the existence of Titan’s atmosphere,” said Dr. Kelly Miller, who is a SwRI research scientist and lead author of the study. “The methane is removed by reactions caused by sunlight and would disappear in about 30 million years after which the atmosphere would freeze onto the surface. Scientists think an internal source must replenish the methane, or else the atmosphere has a geologically short lifetime.”

For the study, the researchers conducted a series of laboratory experiments with organic matter obtained from the Murchison meteorite to simulate conditions on Titan that could help explain how its atmosphere is replenished from the interior. In the end, the researchers found that temperatures above 250 degrees Celsius (482 degrees Fahrenheit) result in the methane production that is enough to replenish Titan’s atmosphere, along with enough nitrogen production to replenish the atmosphere, as well.

Needham raised the firm’s price target on D-Wave Quantum (QBTS) to $8.50 from $2.25 and keeps a Buy rating on the shares as part of a broader research note on Quantum Computing names. Over the past several months, the combination of technical milestone achievements, announcements of quantum contract awards of increasing dollar value and mentions of quantum computing by leading technology CEOs has increased awareness of the potential opportunity for quantum computing among mainstream investors, and reflecting this increased awareness, the stock prices of pure play quantum computing companies have increased several fold since September 30, 2024, the analyst tells investors in a research note. s. 5.9% for the S&P 500. The increasing valuations for quantum computing companies reflect growing recognition that quantum computing may disrupt a meaningful portion of the $1T computing market over the next decade, the firm added.