Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

MIT study finds targets for a new tuberculosis vaccine

A large-scale screen of tuberculosis proteins has revealed several possible antigens that could be developed as a new vaccine for TB, the world’s deadliest infectious disease.

In the new study, a team of MIT biological engineers was able to identify a handful of immunogenic peptides, out of more than 4,000 bacterial proteins, that appear to stimulate a strong response from a type of T cells responsible for orchestrating immune cells’ response to infection.

There is currently only one vaccine for tuberculosis, known as BCG, which is a weakened version of a bacterium that causes TB in cows. This vaccine is widely administered in some parts of the world, but it poorly protects adults against pulmonary TB. Worldwide, tuberculosis kills more than 1 million people every year.

Does being infected or vaccinated first influence COVID-19 immunity?

A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated?

According to the results, the order of the events does alter the outcome, at least when it comes to long-term protection against omicron.

The study, published in Nature Communications, was led by the Barcelona Institute for Global Health (ISGlobal) in collaboration with the Catalan Health Institute (ICS) and the Jordi Gol Institute (IDIAP JG), and with support from the Daniel Bravo Andreu Private Foundation (FPDBA).

Major breakthrough clears key obstacle for the future of quantum internet

For years, the dream of a fully secure quantum Internet has been held back by a single, stubborn obstacle: repeaters. Whenever quantum networks needed them, scientists had to fall back on traditional models — a compromise that opened the door to potential security flaws. But now, researchers have finally filled in the missing piece of the puzzle, bringing the first true quantum relays within reach.

Unlike traditional data systems, quantum communication relies entirely on light. Instead of sending electrical signals, it uses pairs of entangled photons to create an unbreakable secret key between sender and receiver. Theoretically, this makes eavesdropping impossible — any attempt to intercept the signal would immediately destroy it.

Even with its promise of speed and security, quantum communication hasn’t yet reached everyday use. The main challenge lies in preserving quantum information. Only a handful of photons can travel together, and their light signal fades quickly over long distances.

Scientists discover that gold is a ‘reactive metal’ by accidentally creating a new material in the lab

In a high-pressure lab experiment, scientists accidentally created a new compound called gold hydride. This particular hydride formed when thin gold foil met dense hydrogen at pressures hundreds of thousands of times Earth’s atmosphere and blazing temperatures.

The discovery challenges gold’s reputation as a nearly inert metal and shows how extreme conditions can push familiar materials into unfamiliar forms.

When solar radiation grounds planes

In late November, airlines around the world were told to urgently ground planes within their Airbus A320 fleets. Investigators had found that intense bursts of solar radiation could corrupt data inside a flight-control computer, potentially causing an aircraft to pitch unexpectedly. Pitch is the movement of the aircraft nose upward or downward.

Approximately 6,000 aircraft from the A320 family, about half of all A320s flying globally, needed immediate software changes before they could carry passengers again.

In Australia, Jetstar canceled around 90 flights and disrupted travel for more than 15,000 passengers, while engineers worked through the night to install the fix.

Hidden ‘switches’ in DNA reveal new insights into Alzheimer’s disease

A tiny percentage of our DNA—around 2%—contains 20,000-odd genes. The remaining 98%—long known as the non-coding genome, or so-called ‘junk’ DNA—includes many of the “switches” that control when and how strongly genes are expressed.

Now researchers from UNSW Sydney have identified the DNA switches that help control how astrocytes work—these are brain cells that support neurons, and are known to play a role in Alzheimer’s disease.

In research published in Nature Neuroscience, researchers from UNSW’s School of Biotechnology & Biomolecular Sciences described how they tested nearly 1,000 potential switches—strings of DNA known as enhancers—in human astrocytes grown in the lab. Enhancers can be located very far away from the gene they control, sometimes hundreds of thousands of DNA letters away—making them difficult to study.

Antiviral trial ties valacyclovir to faster cognitive decline

New York State Psychiatric Institute and Columbia University Medical Center investigators, with co-authors across additional US centers, report greater cognitive worsening at 78 weeks with valacyclovir than with placebo among adults with early symptomatic Alzheimer’s disease and herpes simplex virus (HSV) seropositivity.

Infectious diseases may contribute to Alzheimer’s disease pathogenesis. HSV-1 can become latent after oral infection, enter the brain via retrograde axonal transport, infiltrate the locus coeruleus, and migrate to the temporal lobe.

β-amyloid plaques and tau neurofibrillary tangles are neuropathological features of Alzheimer’s disease. Animal models connect HSV-1 infection of neuronal and glial cells with a decrease in amyloid precursor protein, an increase in intracellular amyloid β-protein, and phosphorylation of tau protein.

Creatine kinase B regulates glycolysis and de novo lipogenesis pathways to control lipid accumulation during adipogenesis

Renzi et al. identify creatine kinase B (CKB) as a metabolic sensor during white adipocyte differentiation. By modulating AKT, CKB fine-tunes insulin signaling and glycolysis to restrain ChREBP activation, thereby controlling de novo lipogenesis. This work links creatine metabolism to nutrient-responsive transcriptional regulation of lipid accumulation.

/* */