Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Incredible Science of Bioprinting

Dive into the remarkable world of bioprinting in this comprehensive video. We’ll be exploring the core concepts of bioprinting — a pioneering technique that uses biological materials to create structures that mimic natural tissues, organs, and even cells. Understand the sophisticated science behind this process, and learn how bio-inks are formulated and layered to build live cells. We’ll also embark on a historical journey, tracing the origins and evolution of bioprinting, and how it is reshaping modern medicine. From overcoming organ shortages to paving the way for personalized treatments, bioprinting is revolutionizing healthcare. Join us as we unpack this fascinating technology and its promising future.

For more information on how patents can help drive your innovation.
visit https://www.patsnap.com/

From concept to commercialization, Patsnap’s innovation intelligence platform breaks boundaries to connect innovators with insights.

Follow us on social for more!
LinkedIn: / patsnap.
Facebook: / patsnap.
Twitter: / patsnap.
Instagram: / _patsnap.

PatSnap (UK) Limited (PatSnap) hereby disclaims all representations and warranties, express or implied, with respect to information, advertisements and all other ad-hoc materials published by us. PatSnap does not represent or warrant that the information accessible on this material is accurate, complete or current, and makes no claims or warranties of any kind, including the suitability of information, or merchantability and fitness for a particular purpose. It is the sole responsibility of the Recipient of such information to comply with all applicable laws, rules and regulations and they are responsible for meeting any regulatory, compliance and legal obligations. All due-diligence and vetting of services are the sole responsibility of the Recipient.

Tiny Molecule Made by Gut Bacteria Could Cut Type 2 Diabetes Risk

A compound produced by gut bacteria could play a vital role in managing and preventing type 2 diabetes, according to a study led by researchers from Imperial College London (ICL).

The small molecule, called trimethylamine (TMA), is a major type of bacterial metabolite – a class of chemicals produced naturally through processes of transforming nutrients into energy and building blocks.

Scientists have now found evidence in human cell models and lab mice that TMA could protect the body from some of the damage triggered by a high-fat diet. Specifically, it has the effect of dampening down inflammation and improving insulin response, both of which reduce the risk of type 2 diabetes.

Anything-goes “anyons” may be at the root of surprising quantum experiments

In the past year, two separate experiments in two different materials captured the same confounding scenario: the coexistence of superconductivity and magnetism. Scientists had assumed that these two quantum states are mutually exclusive; the presence of one should inherently destroy the other.

Now, theoretical physicists at MIT have an explanation for how this Jekyll-and-Hyde duality could emerge. In a paper appearing today in the Proceedings of the National Academy of Sciences, the team proposes that under certain conditions, a magnetic material’s electrons could splinter into fractions of themselves to form quasiparticles known as “anyons.” In certain fractions, the quasiparticles should flow together without friction, similar to how regular electrons can pair up to flow in conventional superconductors.

If the team’s scenario is correct, it would introduce an entirely new form of superconductivity — one that persists in the presence of magnetism and involves a supercurrent of exotic anyons rather than everyday electrons.

Engineered dendritic cells boost cancer immunotherapy

EPFL researchers have successfully engineered cells of the immune system to more effectively recognize cancer cells. The work, covered in two papers, turns the previously lab-based method into a full-blown immunotherapy strategy.

Cancer immunotherapy is a strategy that turns the patient’s own immune cells into a “search-and-destroy” force that attacks the tumor’s cells. The “search” immune cells are the dendritic cells, which collect and present identifying parts of the cancer cells (antigens) to the “destroy” part (T cells), the immune system’s killer cells.

The problem is that many tumors “learn” how to evade detection by the patient’s dendritic cells. Clinicians address this by collecting dendritic cells from the patient’s blood, loading them in the laboratory with tumor material—antigens that train dendritic cells to better identify the tumor—and then injecting them back into the patient.

Single Injection Transforms the Immune System Into a Cancer-Killing Machine

Despite risks, results from both trials highlight the promise of one-and-done CAR T therapy for deadly blood cancers. But it’s still early days. Scientists need to carefully follow patients over years to understand how long upgraded T cells remain in the body and their effect on cancers.

And not all viral carriers are made the same. Lentiviruses, used in both studies, can tunnel into the human genome, causing DNA typos that potentially trigger secondary cancers. The durability of the therapy, its longevity, and immune side effects also need to be studied.

Kelonia is adding more patients to their trial, amid an increasingly competitive landscape. AstraZeneca has acquired EsoBiotec to bring its technology to market. AbbVie, a drug company in Illinois, is testing the delivery of gene-editing tools to T cells via fatty nanoparticles in clinical trials. And Kelonia is planning a second clinical trial with an initial 20 patients and 20 more in an expansion phase, none of whom responded to at least three previous treatments.

New reactor produces clean energy and carbon nanotubes from natural gas

Scientists from the University of Cambridge have developed a new reactor that converts natural gas (a common energy source primarily composed of methane) into two highly valuable resources: clean hydrogen fuel and carbon nanotubes, which are ultralight and much stronger than steel.

Hydrogen is a promising green fuel because it burns completely, producing only water vapor and zero carbon dioxide. However, the way we make hydrogen today typically involves using high-pressure steam to break apart gas molecules, which releases significant amounts of CO2 as a byproduct.

To avoid this, the Cambridge team wanted to perfect a technique called methane pyrolysis, which converts methane into hydrogen and solid carbon without producing carbon dioxide. However, until now, no one has been able to perform this process efficiently enough for large-scale use because traditional reactors waste too much gas.

Aging’s Effect on Working Memory—Modality Comparison

Research exploring the impact of development and aging on working memory (WM) has primarily concentrated on visual and verbal domains, with limited attention paid to the tactile modality. The current study sought to evaluate WM encompassing storage and manipulation across these three modalities, spanning from childhood to old age. The study included 134 participants, divided into four age groups: 7–8, 11–12, 25–35, and 60–69. Each participant completed the Visuospatial Span, Digit Span, and Tactual Span, with forward and backward recall. The findings demonstrated a consistent trend in both forward and backward stages. Performance improved until young adulthood, progressively diminishing with advancing age. In the forward stage, the Tactual Span performance was worse than that of the Digit and Visuospatial Span for all participants.

/* */