Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

P53 in the DNA-Damage-Repair Process

The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability.

A new scalable approach to realize a quantum communication network based on ytterbium-171 atoms

Quantum networks, systems consisting of connected quantum computers, quantum sensors or other quantum devices, hold the potential of enabling faster and safer communications. The establishment of these networks relies on a quantum phenomenon known as entanglement, which entails a link between particles or systems, with the quantum state of one influencing the other even when they are far apart.

The atom-based qubits used to establish so far operate at visible or ultraviolet wavelength, which is not ideal for the transmission of signals over long distances via optical fibers. Converting these signals to telecom-band wavelengths, however, can reduce the efficiency of communication and introduce undesirable signals that can disrupt the link between qubits.

A research team at University of Illinois at Urbana-Champaign, led by Prof. Jacob P. Covey recently realized telecom-band wavelength quantum networking using an array of ytterbium-171 atoms. Their paper, published in Nature Physics, introduces a promising approach to realize high-fidelity entanglement between atoms and optical photons generated directly in the telecommunication band.

Nasal spray with gold nanoparticles delivers targeted treatment to the brain

Tiny gold particles that act as carriers for lithium can be delivered directly to the brain in the form of a nasal spray. Developed by scientists at the Università Cattolica Rome campus/Fondazione Policlinico Universitario A. Gemelli IRCCS, the new nanotechnological device can be used for the treatment and prevention of neuropsychiatric and neurodegenerative diseases.

Lithium is already in for manic-depressive syndrome, but in oral formulation it is not free of side effects. It is used to combat neuropsychiatric diseases such as bipolar disorder, neurodegenerative diseases such as Alzheimer’s disease, and brain infections such as those caused by Herpes Simplex Virus type 1, which several recent studies have linked to an increased risk of neurological diseases.

Published in the journal Advanced Materials and already patented, the idea is the result of a study that demonstrated that it is possible to directly inhibit the activity of an enzyme that plays a key role in the development of these diseases (glycogen synthase kinase-3 beta, GSK-3β) directly in the brain by using lithium delivered by intranasally administered .

Molecular motors drive new non-invasive cancer therapies

Imagine tiny machines, smaller than a virus, spinning inside cancer cells and rewiring their behavior from within. No surgery, no harsh chemicals, just precision at the molecular level.

Two researchers from the Artie McFerrin Department of Chemical Engineering at Texas A&M University are investigating light-activated molecular motors—nanometer-sized machines that can apply from within cells to target and selectively disrupt cancerous activity.

Chemical engineering professor Dr. Jorge Seminario and postdoctoral associate Dr. Diego Galvez-Aranda have contributed to pioneering research by demonstrating a new frontier in non-invasive cancer therapies. The recently published manuscript in the Journal of the American Chemical Society continues this line of investigation.

What’s The Biochemistry Of Fitness In 80yr Olds?

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Prediabetes remission possible without dropping pounds, new study finds

There’s a long-held belief in diabetes prevention that weight loss is the main way to lower disease risk. Our new study challenges this.

For decades, people diagnosed with prediabetes—a condition affecting up to one in three adults depending on age—have been told the same thing by their doctors: eat healthily and lose weight to avoid developing diabetes.

This approach hasn’t been working for all. Despite unchanged medical recommendations for more than 20 years, diabetes prevalence continues rising globally. Most people with prediabetes find weight-loss goals hard to reach, leaving them discouraged and still at high risk of diabetes.

Fundamental engineering principles can help identify disease biomarkers more quickly

People often compare the genome to a computer’s program, with the cell using its genetic code to process environmental inputs and produce appropriate responses.

But the machine metaphor can be extended even further to any , and applying established concepts of engineering to biology could revolutionize how scientists make their observations within biology, according to research from University of Michigan.

In a paper published in Proceedings of the National Academy of Sciences, Indika Rajapakse, Ph.D., Joshua Pickard, Ph.D. (now an Eric and Wendy Schmidt Postdoctoral Fellow at the Broad Institute), and their team propose that fundamental principles of and observability can be applied to study that change over time.

/* */