Toggle light / dark theme

A fluorescent molecule whose luminosity depends upon how fast it can rotate is helping researchers measure how viscous the fluid is inside different parts of a cell.

“There’s a lot of interest in the biophysical field in developing that can be used to characterize the environment inside a cell or any kind of biological compartment,” says Peter Bond, from A*STAR’s Bioinformatics Institute.

Researchers from the United Kingdom and Singapore—including A*STAR scientists such as Bond’s team who led the computational arm of the project—have modeled, developed and tested a molecule comprising two parts; a genetic probe designed to home in on particular proteins, so it can be directed to wherever in a cell that is found; and a molecular rotor—a fluorescent molecule whose fluorescence lasts longer, the slower it spins. A*STAR researchers simulated how this molecule would perform in different microenvironments at scales of millionths or even billionths of a meter.

Read more

Humanity is producing so much data every single minute that we either need to slow down, or scientists need to crack the problem of finding better ways of storing that data ASAP. Now, new research has taken us one step closer to the ultimate in compact data storage: putting data on a single atom.

As the basic building blocks of all matter, atoms are the smallest object we could possibly store a bit (a 1 or a 0) on, potentially shrinking down the size of existing hard drives by about a thousand times or so, if we can figure out how to get it to work.

Scientists have already made progress in storing bits on atoms, but only on a small scale and in tightly controlled lab conditions, which usually means extremely cold setups.

Read more

NASA’s got a whole new plan. It wants boots on the Moon in 10 years and on Mars in 20. Give or take.

On Wednesday, the space agency announced its detailed National Space Exploration Plan to achieve the President’s lofty goals set out in his December 2017 Space Policy Directive-1.

Those bold plans include: planning a new Moon landing, long-term human deployment on and around the Moon, reassertion of America’s leadership in space, strengthening private space companies, and figure out how to get American astronauts to the surface of Mars.

Read more

From space colonization to resurrection of dinosaurs to machine intelligence, the most awe-inspiring visions of humanity’s future are typically born from science fiction.

But among an abundance of time travel, superheroes, space adventures, and so forth, biotech remains underrepresented in the genre.

This selection highlights some outstanding works (new and not so new) to fill the sci-fi gap for biotech aficionados.

Read more