Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Bioimaging device with nonmechanical design could improve eye and heart condition detection

If you’ve been to a routine eye exam at the optometrist’s office, chances are you’ve had to place your chin and forehead up close to a bioimaging device.

It’s known as (OCT), and it’s widely used in eye clinics around the world. OCT uses to take high-resolution, cross-sectional images of the retina in a noninvasive manner. These images can be essential for diagnosing and monitoring eye conditions.

In any bioimaging—either retinal or in-vivo imaging that takes place inside the human body—devices must be quite small and compact to produce high-quality images. However, mechanical aspects of OCT devices, like spinning mirrors, can increase the chance of device failure.

Scientists Discover Mysterious “Quantum Echo” in Superconductors

Quantum computing. The effect reveals and manipulates hidden quantum states.

Researchers from the U.S. Department of Energy’s Ames National Laboratory and Iowa State University have identified an unusual “quantum echo” in a superconducting material. This finding offers new understanding of quantum behavior that could be applied to future quantum sensing and computing systems.

New Brain Pathway Reveals Why the Same Touch Feels Different

Our brain doesn’t just feel, it decides how much to feel. Researchers discovered a feedback loop that adjusts how sensitive we are to touch, depending on context. This dynamic brain circuit could help explain sensory fluctuations and traits linked to autism.

The cerebral cortex handles incoming sensory input through an intricate web of neural connections. But how exactly does the brain fine-tune these signals to shape what we perceive? Researchers at the University of Geneva (UNIGE) have uncovered a mechanism where specific projections from the thalamus influence the excitability of certain neurons.

Their findings, published in Nature Communications.

/* */