Toggle light / dark theme

Researchers have found bees can do basic mathematics, in a discovery that expands our understanding of the relationship between brain size and brain power.

Building on their finding that honeybees can understand the concept of zero, Australian and French researchers set out to test whether bees could perform arithmetic operations like addition and subtraction.

Solving requires a sophisticated level of cognition, involving the complex mental management of numbers, long-term rules and short term working memory.

Read more

If the forecast calls for rain, you’ll probably pack an umbrella. If it calls for cold, you may bring your mittens. That same kind of preparation happens in buildings, where sophisticated heating and cooling systems adjust themselves based on the predicted weather.

But when the forecast is imperfect—as it often is—buildings can end up wasting , just as we may find ourselves wet, cold or burdened with extra layers we don’t need.

A new approach developed by Fengqi You, professor in engineering at Cornell University, predicts the accuracy of the forecast using a machine learning model trained with years’ worth of data on forecasts and actual weather conditions. You combined that predictor with a that considers characteristics including the size and shape of rooms, the construction materials, the location of sensors and the position of windows.

Read more

Miracle material graphene – considered the strongest substance known to science – has been used to make eco-friendly paint by manufacturer Graphenstone.

The paint is made from a pure lime base that has been combined with graphene – a recently engineered material hailed as the thinnest, strongest and most conductive ever developed.

It will be distributed in the UK through The Graphene Company, which claims Graphenstone is the most environmentally friendly paint in the world.

Read more

Circa 2013


When a material is damaged, you wouldn’t expect pulling it apart to suddenly make it less damaged. This counterintuitive effect is exactly what researchers at MIT observed in an experimental model recently, and it was so unexpected that the results had to be rechecked before anyone was ready to believe it. Astonishingly, it seems that under the right conditions, metal with small flaws and cracks can heal itself when tension is applied — if you pull it apart, it puts itself back together.

Researchers led by graduate student Guoqiang Xu and professor Michael Demkowicz modeled microscopic cracks in a sheet of nickel with tension applied. Instead of worsening, the cracks became smaller, then closed on their own as the edges fused together. After assuring themselves the effect was real, the next step was figuring out how it happens.

Princeton researchers have demonstrated a new way of making controllable “quantum wires” in the presence of a magnetic field, according to a new study published in Nature.

The researchers detected channels of conducting electrons that form between two states on the surface of a bismuth crystal subjected to a high magnetic field. These two states consist of electrons moving in elliptical orbits with different orientations.

To the team’s surprise, they found that the current flow in these channels can be turned on and off, making these channels a new type of controllable quantum wire.

Read more

Researchers have launched an ultra-large virtual docking library expected to grow to more than 1 billion molecules by next year. It will expand by 1000-fold the number of such “make-on-demand” compounds readily available to scientists for chemical biology and drug discovery. The larger the library, the better its odds of weeding out inactive “decoy” molecules that could otherwise lead researchers down blind alleys. The project is funded by the National Institutes of Health.

“To improve medications for mental illnesses, we need to screen huge numbers of potentially therapeutic molecules,” explained Joshua A. Gordon, M.D., Ph.D., director of NIH’s National Institute of Mental Health (NIMH), which co-funded the research. “Unbiased computational modeling allows us to do this in a computer, vastly expediting the process of discovering new treatments. It enables researchers to virtually “see” a molecule with its receptor protein—like a ship in its harbor berth or a key in its lock—and predict its pharmacological properties, based on how the are predicted to interact. Only those relatively few candidate molecules that best match the target profile on the computer need to be physically made and tested in a wet lab.”

Bryan Roth, M.D., Ph.D., of the University of North Carolina (UNC) Chapel Hill, Brian Shoichet, Ph.D., and John Irwin, Ph.D., of the University of California San Francisco, and colleagues, report on their findings Feb. 6, 2019 in the journal Nature. The study was supported, in part, by grants from NIMH, National Institute of General Medical Sciences (NIGMS), the NIH Common Fund, and National Institute of Neurological Disorders and Stroke (NINDS).

Read more

Circa 2005


Until 1993 LEDs could only produce red, green and yellow light. But then Nichia Chemical of Japan figured out how to produce blue LEDs. By combining blue LEDs with red and green LEDs – or adding a yellow phosphor to blue LEDs – manufacturers were able create white light, which opened up a number of new applications. However, these LEDs tend to produce white light with a cool, bluish tinge.

The white-light quantum dots, by contrast, produce a smoother distribution of wavelengths in the visible spectrum with a slightly warmer, slightly more yellow tint, reports Michael Bowers, the graduate student who made the quantum dots and discovered their unusual property. As a result, the light produced by the quantum dots looks more nearly like the “full spectrum” reading lights now on the market which produce a light spectrum closer to that of sunlight than normal fluorescent tubes or light bulbs. Of course, quantum dots, like white LEDs, have the advantage of not giving off large amounts of invisible infrared radiation unlike the light bulb. This invisible radiation produces large amounts of heat and largely accounts for the light bulb’s low energy efficiency.

Image left: The crude hybrid white-light LED that Bowers made by mixing magic-sized quantum dots with Minwax and using the mixture to coat a blue LED. Photo by Daniel Dubois.