Toggle light / dark theme

NASA’s Parker Solar Probe has successfully completed its second close approach to the Sun.

At 6:40 p.m. EST on April 4, the spacecraft—traveling at 213,200 mph—passed within 15 million miles of our star, tying its own distance record as the closest-ever ship to the Sun.

The mission team at John’s Hopkins Applied Physics Laboratory (APL) in Laurel, Md., kept a close eye on the spacecraft via the Deep Space Network: They were tuned in for four hours before, during, and after approach, monitoring the probe’s health during the critical moments.

Read more

Scientists report the world’s first fully computer-generated genome of a living organism.

To do so, they used a new method that greatly simplifies the production of large DNA molecules containing many hundreds of genes. They report their work in PNAS.

All the genome sequences of organisms known throughout the world are stored in a database belonging to the National Center for Biotechnology Information in the United States. Now, the database has an additional entry: Caulobacter ethensis-2.0.

Read more

With new advances in technology it all comes down to simple factoring. Classical factoring systems are outdated where some problems would take 80 billion years to solve but with new technologies such as the dwave 2 it can bring us up to speed to do the same problems in about 2 seconds. Shores algorithm shows us also we can hack anything with it simply would need the technology and code simple enough and strong enough. Basically with new infrastructure we can do like jason…


RSA is the standard cryptographic algorithm on the Internet. The method is publicly known but extremely hard to crack. It uses two keys for encryption. The public key is open and the client uses it to encrypt a random session key. Anyone intercepts the encrypted key must use the second key, the private key, to decrypt it. Otherwise, it is just garbage. Once the session key is decrypted, the server uses it to encrypt and decrypt further messages with a faster algorithm. So, as long as we keep the private key safe, the communication will be secure.

RSA encryption is based on a simple idea: prime factorization. Multiplying two prime numbers is pretty simple, but it is hard to factorize its result. For example, what are the factors for 507,906,452,803? Answer: 566,557 × 896,479.

Based on this asymmetry in complexity, we can distribute a public key based on the product of two prime numbers to encrypt a message. But without knowing the prime factors, we cannot decrypt the message to its original intention. In 2014, WraithX used a budget of $7,600 on Amazon EC2 and his/her own resources to factorize a 696-bit number. We can break a 1024-bit key with a sizeable budget within months or a year. This is devasting because SSL certificates holding the public key last for 28 months. Fortunately, the complexity of the prime factorization problem grows exponentially with the key length. So, we are pretty safe since we switch to 2048-bit keys already.

In a new study, researchers show that the presence of senescent cells is an important contributor to aging of the cardiovascular system, particularly the heart [1].

Senescent cells and senolytics

As your body ages, increasing amounts of your cells enter into a state of senescence. Senescent cells do not divide or support the tissues of which they are part; instead, they emit a range of potentially harmful inflammatory chemical signals, which are known as the senescence associated secretory phenotype (SASP). The SASP can also encourage other nearby healthy cells to also enter the same senescent state.

Read more