Toggle light / dark theme

The “super premium” segment here implies a driving range of around 600 miles per charge. In addition, Samsung will be introducing high-nickel NCS products for the premium segment.

Samsung’s oxide solid-state battery technology boasts an energy density of 500 Wh/kg, nearly double the 270 Wh/kg density of mainstream EV batteries.

This increased density could potentially double the driving range of current electric vehicles.

This could be the road to quantum computation.


“In contrast, solid-state emitters embedded in a photonic circuit are hardly ‘the same’ due to slightly different surroundings influencing each emitter. It is much harder for many solid-state emitters to build up phase coherence and collectively interact with photons like cold atoms. We could use cold atoms trapped on the circuit to study new collective effects,” Hung continues.

The platform demonstrated in this research could provide a photonic link for future distributed quantum computing based on neutral atoms. It could also serve as a new experimental platform for studying collective light-matter interactions and for synthesizing quantum degenerate trapped gases or ultracold molecules.

“Unlike electronic transistors used in daily life, our atom-coupled integrated photonic circuit obeys the principles of quantum superposition,” explains Hung. “This allows us to manipulate and store quantum information in trapped atoms, which are quantum bits known as qubits. Our circuit may also efficiently transfer stored quantum information into photons that could ‘fly’ through the photonic wire and a fiber network to communicate with other atom-coupled integrated circuits or atom-photon interfaces. Our research demonstrates a potential to build a based on cold-atom integrated nanophotonic circuits.”

It looks like NASA officials might be seeing the writing on the wall for the very troubled Boeing Starliner, which has marooned two astronauts up in space for almost two months due to technical issues.

An unnamed “informed” source told Ars Technica that there’s a greater than 50 percent probability that the stranded astronauts will end up leaving the International Space Station on a SpaceX Dragon capsule, with another unnamed person telling the news outlet that the scenario is highly likely.

NASA officials are more cagey about what’s happening on the record, a marked contrast from previous weeks when they expressed confidence in the Starliner’s ability to safely bring back the astronauts.

One of the significant challenges in AI research is the computational inefficiency in processing visual tokens in Vision Transformer (ViT) and Video Vision Transformer (ViViT) models. These models process all tokens with equal emphasis, overlooking the inherent redundancy in visual data, which results in high computational costs. Addressing this challenge is crucial for the deployment of AI models in real-world applications where computational resources are limited and real-time processing is essential.

Current methods like ViTs and Mixture of Experts (MoEs) models have been effective in processing large-scale visual data but come with significant limitations. ViTs treat all tokens equally, leading to unnecessary computations. MoEs improve scalability by conditionally activating parts of the network, thus maintaining inference-time costs. However, they introduce a larger parameter footprint and do not reduce computational costs without skipping tokens entirely. Additionally, these models often use experts with uniform computational capacities, limiting their ability to dynamically allocate resources based on token importance.

🚀 [FREE AI WEBINAR] ‘Learn how to fine-tune SAM 2 with your own data.’ (August 8, 2024 10 am PST) [Promoted].

In 2021, a team led by MIT physicists reported creating a new ultrathin ferroelectric material, or one where positive and negative charges separate into different layers. At the time, they noted the material’s potential for applications in computer memory and much more. Now the same core team and colleagues—including two from the lab next door—have built a transistor with that material and shown that its properties are so useful that it could change the world of electronics.

Although the team’s results are based on a single transistor in the lab, “in several aspects its properties already meet or exceed industry standards” for the ferroelectric transistors produced today, says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics, who led the work with professor of physics Raymond Ashoori. Both are also affiliated with the Materials Research Laboratory.

“In my lab we primarily do . This is one of the first, and perhaps most dramatic, examples of how very basic science has led to something that could have a major impact on applications,” Jarillo-Herrero says.

A research team led by engineers at the University of Virginia School of Engineering and Applied Science is the first to explore how an emerging plant-based material, cellulose nanofibrils, could amplify the benefits of 3D-printed concrete technology.

“The improvements we saw on both printability and mechanical measures suggest that incorporating cellulose nanofibrils in commercial printable materials could lead to more resilient and eco-friendly construction practices sooner rather than later,” said Osman E. Ozbulut, a professor in the Department of Civil and Environmental Engineering.

His team’s findings will be published in the September 2024 issue of Cement and Concrete Composites.

And this shows one of the many ways in which the Economic Singularity is rushing at us. The 🦾🤖 Bots are coming soon to a job near you.


NVIDIA unveiled a suite of services, models, and computing platforms designed to accelerate the development of humanoid robots globally. Key highlights include:

- NVIDIA NIM™ Microservices: These containers, powered by NVIDIA inference software, streamline simulation workflows and reduce deployment times. New AI microservices, MimicGen and Robocasa, enhance generative physical AI in Isaac Sim™, built on ‪@NVIDIAOmniverse