Menu

Blog

Page 925

Jul 17, 2024

Metamaterials for the data highway: New concept offers potential for more efficient data storage

Posted by in categories: computing, transportation

Researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), TU Chemnitz, TU Dresden and Forschungszentrum Jülich have been the first to demonstrate that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers.

Jul 17, 2024

Neutrino interaction rates measured at unprecedented energies

Posted by in category: particle physics

A team including researchers from the Laboratory for High Energy Physics at the University of Bern has successfully measured the interaction rates of neutrinos at unprecedented energies using the Large Hadron Collider (LHC) at CERN. The study was published in the journal Physical Review Letters.

Jul 17, 2024

Physicists pool skills to better describe the unstable sigma meson particle

Posted by in categories: computing, particle physics

While nuclear physicists know the strong interaction is what holds together the particles at the heart of matter, we still have a lot to learn about this fundamental force. Results published earlier this year in Physical Review D by three researchers in the Center for Theoretical and Computational Physics at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility bring us closer to understanding an important piece of the strong interaction puzzle.

Jul 17, 2024

Quantum microscopy study makes electrons visible in slow motion

Posted by in category: quantum physics

Physicists at the University of Stuttgart under the leadership of Prof. Sebastian Loth are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution.

Jul 17, 2024

First health care device powered by body heat made possible by liquid based metals

Posted by in categories: bioengineering, energy, health, wearables

In the age of technology everywhere, we are all too familiar with the inconvenience of a dead battery. But for those relying on a wearable health care device to monitor glucose, reduce tremors, or even track heart function, taking time to recharge can pose a big risk.

For the first time, researchers in Carnegie Mellon University’s Department of Mechanical Engineering have shown that a health care device can be powered using alone. By combining a pulse oximetry sensor with a flexible, stretchable, wearable thermoelectric energy generator composed of , semiconductors, and 3D printed rubber, the team has introduced a promising way to address battery life concerns.

“This is the first step towards battery-free wearable electronics,” said Mason Zadan, Ph.D. candidate and first author of the research published in Advanced Functional Materials.

Jul 17, 2024

Unlocking the Secrets of LUCA, Earth’s Earliest Life Form

Posted by in categories: biotech/medical, genetics

A University of Bristol-led study found that life on Earth, stemming from a common ancestor called LUCA, flourished soon after the planet’s formation.

Through genetic analysis and evolutionary modeling, researchers pinpointed LUCA’s existence to about 4.2 billion years ago, revealing it as a complex organism with an early immune system integral to Earth’s earliest ecosystems.

Luca’s genetic blueprint and its descendants.

Jul 17, 2024

Revolutionizing H2O2 Production: Ultrathin Nanosheets Show Immense Promise

Posted by in categories: chemistry, energy

Recent research has demonstrated the effectiveness of ultrathin Bi4O5Br2 nanosheets with controlled oxygen vacancies in enhancing the piezocatalytic production of hydrogen peroxide (H2O2), presenting a viable, environmentally friendly alternative to traditional methods.

Hydrogen peroxide (H2O2) serves as a crucial chemical raw material with extensive applications in numerous industrial and everyday contexts. However, the industrial anthraquinone method of producing H2O2 is fraught with significant drawbacks, including high levels of pollution and energy consumption. An alternative approach involves harnessing ubiquitous mechanical energy for piezocatalytic H2O2 evolution, which offers a promising strategy. Despite its potential, this method faces challenges due to its unsatisfactory energy conversion efficiency.

Bi4O5Br2 is regarded as a highly attractive photocatalytic material due to its unique sandwich structure, excellent chemical stability, good visible light capture ability, and suitable band structure. Aspired by its non-centrosymmetric crystal structure, piezoelectric performance has begun to enter the vision of researchers recently. However, its potential as an efficient piezocatalyst is far from being exploited, especially since the impacts of defects on piezocatalysis and piezocatalytic H2O2 production over Bi4O5Br2 remains scanty. Thus, mechanical energy-driven piezocatalysis provides a promising method for H2O2 synthesis from pure water with great attraction.

Jul 17, 2024

Students Revolutionize Army Vehicle Camouflage With Ingenious Invention

Posted by in categories: engineering, military

University of Florida senior engineering students, collaborating with peers and the U.S. Army, developed a vehicle camouflage deployment device that enhances battlefield safety and efficiency. The project, which spanned three semesters and involved input from soldiers, resulted in a device that significantly speeds up the camouflage process, uses existing materials more effectively, and adapts to various ground conditions.

University of Florida and Georgia Tech engineering students developed a vehicle camouflage system for the U.S. Army, enhancing camouflage speed and safety, and demonstrating the potential of academic-military collaboration to solve practical defense challenges.

What began as a class project for senior engineering students at the University of Florida evolved into a practical solution for soldiers, providing them with a quicker, easier, and safer method to camouflage their vehicles on the battlefield.

Jul 17, 2024

Omega Centauri: A Galaxy Core Frozen in Time Reveals Its Black Hole

Posted by in categories: cosmology, evolution

Researchers have confirmed the presence of an intermediate-mass black hole in the core of Omega Centauri, a cluster that once formed the heart of a separate galaxy. This finding enhances our understanding of black hole evolution and galaxy dynamics. (Artist’s concept.) Credit: SciTechDaily.com.

Researchers confirmed an intermediate-mass black hole in Omega Centauri’s center, supporting theories of its origin as a distinct galaxy core merged with the Milky Way.

Continue reading “Omega Centauri: A Galaxy Core Frozen in Time Reveals Its Black Hole” »

Jul 17, 2024

Silicon Transformed: A Breakthrough in Laser Nanofabrication

Posted by in categories: innovation, nanotechnology

A new method enables precise nanofabrication inside silicon using spatial light modulation and laser pulses, creating advanced nanostructures for potential use in electronics and photonics.

Silicon, the cornerstone of modern electronics, photovoltaics, and photonics, has traditionally been limited to surface-level nanofabrication due to the challenges posed by existing lithographic techniques. Available methods either fail to penetrate the wafer surface without causing alterations or are limited by the micron-scale resolution of laser lithography within Si.

In the spirit of Richard Feynman’s famous dictum, ‘There’s plenty of room at the bottom’, this breakthrough aligns with the vision of exploring and manipulating matter at the nanoscale. The innovative technique developed by the Bilkent team surpasses current limitations, enabling controlled fabrication of nanostructures buried deep inside silicon wafers with unprecedented control.

Page 925 of 12,384First922923924925926927928929Last