Toggle light / dark theme

(CNN) — Regular aspirin use may keep the oncologist away, at least when it comes to colorectal cancer, according to a new study, and people with unhealthy lifestyles seemed to see the greatest benefit.

Colorectal cancer is the second most common cause of cancer death worldwide, predicted to cause more than 52,500 deaths in the US alone in 2023. About 153,020 people in the US were diagnosed with the condition in 2023, and it’s become much more prevalent among people under 55, with numbers more than doubling in this group from a decade ago, studies show.

The causes of colorectal cancer can be genetic, but certain lifestyle factors also seem to raise risk, including eating an unhealthy diet, not getting enough exercise, drinking alcohol, smoking and having a high body mass index.

Space weather is heating up in our current solar cycle peak.

By Clara Moskowitz & Matthew Twombly

Aurora sightings may become more common, and satellite communications and power grids could be disrupted, as solar activity peaks. Our nearest star is always volatile, but its magnetic action waxes and wanes on an 11-year loop. The sun is thought to be in a peak now, although scientists will need another year or two to analyze data before they can say for sure. During this high point we should see more sunspots (dark areas where the sun’s magnetic field reaches the surface) and solar storms (ejections of energy from the sun that reach into space and can affect Earth).

Innovative techniques being developed to detect gravitational waves beyond the current capabilities of laser interferometers like LIGO and Virgo.


That rare bright spot looks set to become brighter.

All of the more than 100 gravitational-wave events spotted so far have been just a tiny sample of what physicists think is out there. The window opened by LIGO and Virgo was rather narrow, limited mostly to frequencies in the range 100–1,000 hertz. As pairs of heavy stars or black holes slowly spiral towards each other, over millions of years, they produce gravitational waves of slowly increasing frequency, until, in the final moments before the objects collide, the waves ripple into this detectable range. But this is only one of many kinds of phenomenon that are expected to produce gravitational waves.

LIGO and Virgo are laser interferometers: they work by detecting small differences in travel time for lasers fired along perpendicular arms, each a few kilometres long. The arms expand and contract by minuscule amounts as gravitational waves wash over them. Researchers are now working on several next-generation LIGO-type observatories, both on Earth and, in space, the Laser Interferometer Space Antenna; some have even proposed building one on the Moon1. Some of these could be sensitive to gravitational waves at frequencies as low as 1 Hz.

Dark energy remains among the greatest puzzles in our understanding of the cosmos. In the standard model of cosmology called the Lambda-CDM, it is accounted for by adding a cosmological constant term in Einstein’s field equation first introduced by Einstein himself. This constant is very small and positive and lacks a complete theoretical understanding of why it has such a tiny value. Moreover, dark energy has some peculiar features, such as negative pressure and does not dilute with cosmic expansion, which makes at least some of us uncomfortable.

Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so-called non-conservative interactions. Their findings, supported by an analytical model developed by collaborators from Ulm University and the University of Duisburg-Essen, were recently published in Nature Physics.

Understanding Nonreciprocal Interactions

Fundamental forces like gravity and electromagnetism are reciprocal, meaning two objects either attract or repel each other. However, for some more complex interactions arising in nature, this symmetry is broken and some form of nonreciprocity exists. For example, the interaction between a predator and a prey is inherently nonreciprocal as the predator wants to catch (is attracted to) the prey and the latter wants to escape (is repelled).

Soon we will need AI to resolve AI complience acts…is it so hard to understand that to follow complexities of AI/ LLMs you will need AI/LLM to catch the small letters of laws.


Noncompliance with the AI Act can result in severe penalties, such as fines of up to 35 million euros or 7% of the company’s total worldwide annual turnover, depending on which figure is bigger.

An electric air taxi startup is developing an aircraft powered by tomorrow’s fuel: hydrogen. The concept is a hydrogen-powered version of its vertical takeoff and landing aircraft. This fueling power could enable longer routes between cities.

The electric air taxi startup Joby is known for its electric vertical takeoff and landing aircraft (eVOTL) or an air taxi. The company is testing sustainable fuel instead of a battery to power this vehicle. Hydrogen fuel cells are already used in cars, trucks, and industrial equipment. However, using the fuel in aircraft is a game changer. For example, the aviation industry faces much pressure due to its greenhouse gas emissions. Google even added an emissions tracker when looking for a flight.

The company announced that it successfully flew a 523-mile demonstration flight using its one-of-a-kind hydrogen air taxi. The aircraft was tested last month in California and involved a converted prototype of one of its eVOTL aircraft already in development. It’s equipped with a hydrogen fuel cell and hydrogen-electric propulsion. And get this: the only emission is a trail of water vapor.

Is nature really as strange as quantum theory says — or are there simpler explanations? Neutron measurements prove: It doesn’t work without the strange properties of quantum theory.

Quantum theory allows particles to exist in superposition states, defying classical realism. The Leggett-Garg inequality tests this by comparing quantum behavior against classical expectations. Recent neutron beam experiments at TU Wien confirmed that particles do violate this inequality, reinforcing the validity of quantum theory over classical explanations.