Menu

Blog

Page 921

Jan 19, 2024

The National Science Foundation funds Bruker NMR installation at The Ohio State University

Posted by in categories: biotech/medical, science

Novel GHz-class NMR systems are enabling unprecedented life science and materials research in functional structural biology, drug discovery, metabolomics, and cleantech research.

Jan 19, 2024

As abandoned boats pile up in California waters: Who is responsible for the environmental damage?

Posted by in category: futurism

On Jan. 2, a 27-foot sailboat sank off the southern coast of Alameda in stormy weather. Rescue crews saved the man on board, but the ship landed beside a long rock wall jutting from the island.

Jan 19, 2024

Protons reveal universal phenomenon of maximal entanglement

Posted by in categories: particle physics, quantum physics

Eighteen months ago, it was shown that different parts of the interior of the proton must be maximally quantum entangled with each other. This result, achieved with the participation of Prof. Krzysztof Kutak from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow and Prof. Martin Hentschinski from the Universidad de las Americas Puebla in Mexico, was a consequence of considerations and observations of collisions of high-energy photons with quarks and gluons in protons and supported the hypothesis presented a few years earlier by professors Dimitri Kharzeev and Eugene Levin.

Now, in a paper published in the journal Physical Review Letters, an international team of physicists has been presented a complementary analysis of entanglement for collisions between photons and protons in which secondary particles (hadrons) are produced by a process called diffractive deep inelastic scattering. The main question was: does entanglement also occur among quarks and gluons in these cases, and if so, is it also maximal?

Putting it in simple terms, physicists speak of entanglement between various quantum objects when the values of some feature of these objects are related. Quantum entanglement is not observed in the classical world, but its essence is easily explained by the toss of two coins. Each coin has two sides, and when it falls, it can take one of two mutually exclusive values (heads or tails) with the same probability.

Jan 19, 2024

Efficient dendritic learning as an alternative to synaptic plasticity hypothesis

Posted by in category: futurism

Hodassman, S., Vardi, R., Tugendhaft, Y. et al. Efficient dendritic learning as an alternative to synaptic plasticity hypothesis. Sci Rep 12, 6,571 (2022). https://doi.org/10.1038/s41598-022-10466-8

Download citation.

Jan 18, 2024

It Turns Out We Were Born To Groove

Posted by in category: evolution

Studies show that humans have among the most precise and subtle awareness of both musical tonality and ‘beat’, or rhythm.


The evolution of beat perception likely unfolded gradually among primates, reaching its pinnacle in humans.

By Henkjan Honing & The MIT Press Reader

Jan 18, 2024

How to exploit Windows Defender Antivirus to infect a device with malware

Posted by in category: cybercrime/malcode

Malware — information security newspaper | hacking news.

Jan 18, 2024

Science in 2024: what to expect this year

Posted by in categories: climatology, neuroscience, particle physics, science

In this episode, reporter Miryam Naddaf joins us to talk about the big science events to look out for in 2024. We’ll hear about the mass of the neutrino, the neural basis of consciousness and the climate lawsuits at the Hague, to name but a few.


Hear the biggest stories from the world of science | 6 January 2023.

Jan 18, 2024

Peering Into the Abyss: The Cutting-Edge Science of Black Hole Illumination

Posted by in categories: cosmology, science

New discoveries in Tidal Disruption Events enhance our understanding of supermassive black holes and their properties.

A new study by Hebrew University is a significant breakthrough in understanding Tidal Disruption Events (TDEs) involving supermassive black holes. The new simulations, for the first time ever, accurately replicate the entire sequence of a TDE from stellar disruption to the peak luminosity of the resulting flare. This study has unveiled a previously unknown type of shockwave within TDEs, settling a longstanding debate about the energy source of the brightest phases in these events. It confirms that shock dissipation powers the brightest weeks of a TDE flare, opening doors for future studies to utilize TDE observations as a means to measure essential properties of black holes and potentially test Einstein’s predictions in extreme gravitational environments.

The mysteries of supermassive black holes have long captivated astronomers, offering a glimpse into the deepest corners of our universe. Now, a new study led by Dr. Elad Steinberg and Dr. Nicholas C. Stone at the Racah Institute of Physics, The Hebrew University, sheds new light on these enigmatic cosmic entities.

Jan 18, 2024

Fusion Research Advances: New Views on Energetic Ion Flow

Posted by in categories: computing, nuclear energy, space

New observations at the DIII-D National Fusion Facility offer vital insights into energetic ions in fusion plasmas, key for fusion power development and space plasma understanding, with implications for satellite technology.

In a burning plasma, maintaining confinement of fusion-produced energetic ions is essential to producing energy. These fusion plasmas host a wide array of electromagnetic waves that can push energetic ions out of the plasma. This reduces the heating of the plasma from fusion reaction products and ends the burning plasma state.

Recent measurements at the DIII-D National Fusion Facility provide the first direct observations of energetic ions moving through space and energy in a tokamak. Researchers combined these measurements with advanced computer models of electromagnetic waves and how they interact with energetic ions. The results provide an improved understanding of the interplay between plasma waves and energetic ions in fusion plasmas.

Jan 18, 2024

For This Emergent Class of Materials, “Solutions Are the Problem”

Posted by in categories: biotech/medical, materials

Rice University materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs). Credit: Photo by Gustavo Raskosky/Rice University.

Materials scientists at Rice University have created an efficient, affordable, and scalable technique for producing covalent organic frameworks (COFs). These crystalline polymers are notable for their adjustable molecular structure, extensive surface area, and porosity, making them potentially valuable in areas like energy applications, semiconductor devices, sensors, filtration systems, and drug delivery.

“What makes these structures so special is that they are polymers but they arrange themselves in an ordered, repeating structure that makes it a crystal,” said Jeremy Daum, a Rice doctoral student and lead author of a study published in ACS Nano. “These structures look a bit like chicken wire ⎯ they’re hexagonal lattices that repeat themselves on a two-dimensional plane, and then they stack on top of themselves, and that’s how you get a layered 2D material.”

Page 921 of 11,334First918919920921922923924925Last