Toggle light / dark theme

ME Conferences is organizing “18th International Conference on Gastroenterology and Digestive Disorders” during September 16–17, 2019, Dubai, UAE. Conference highlights the theme- Improving Access in Gastroenterology: From Past to Future.

Gastro Meet 2019 is a leading platform for a focused agenda of the current research in the field of gastroenterology which includes, guest lectures, keynotes, symposiums, workshops, exhibitions, panel discussions, and poster sessions. We invite Gastroenterologists, Hepatologists, General Physicians, Microbiologists, Oncologists, Surgeons, Researchers, Students, and Business delegates to join us at Dubai in August 2018 for the 2-day power packed Gastroenterologists Meet.

September 16 (Monday) — 17 (Tuesday)

The periodic table contains a wide array of elements, numbered from one (hydrogen) to 118 (oganesson), with each number representing the number of protons stored within an atom’s nucleus. Scientists are constantly working to create new elements by cramming more and more protons into nuclei, expanding the periodic table. The effort sparks curiosity and questions: Can the table be enlarged in the opposite direction? Is it possible to make an element zero? Does it already exist?

“Element zero” has been a matter of conjecture for nearly a century, and no scientist searched more ardently for it than German chemist Andreas von Antropoff. It was Antropoff who placed the theoretical element atop a periodic table of his own devising, and it was also he who thought up a prescient name for it: neutronium.

You don’t widely hear Antropoff’’s name today, as his Nazi leanings earned the scientist international disgrace. You do, however, hear about neutronium. Today, the term commonly refers to a gaseous substance composed almost purely of neutrons, found within the tiniest, densest stars known to exist: neutron stars.

One of the advantages of the quantum revolution is the ability to sense the world in a new way. The general idea is to use the special properties of quantum mechanics to make measurements or produce images that are otherwise impossible.

Much of this work is done with photons. But as far as the electromagnetic spectrum is concerned, the quantum revolution has been a little one-sided. Almost all the advances in quantum computing, cryptography, teleportation, and so on have involved visible or near-visible light.

Download the FREE PDF:
http://trtrevolution.com/PDF

Learn more about Optimizing Your Health, Reversing Your Aging Process and All Things Testosterone and TOT: http://trtrevolution.com/.

To Get Your FREE Paperback copy of the Amazon Best Selling TRT MANual:(Continental USA Only)
http://trtrevolution.com/book

To Listen to the Audio Version of The TRT MANual

Yay face_with_colon_three


Austrian and Chinese scientists have succeeded in teleporting three-dimensional quantum states for the first time. High-dimensional teleportation could play an important role in future quantum computers.

Researchers from the Austrian Academy of Sciences and the University of Vienna have experimentally demonstrated what was previously only a theoretical possibility. Together with quantum physicists from the University of Science and Technology of China, they have succeeded in teleporting complex high-dimensional quantum states. The research teams report this international first in the journal Physical Review Letters.

In their study, the researchers teleported the of one photon (light particle) to another distant one. Previously, only two-level states (“qubits”) had been transmitted, i.e., information with values “0” or “1”. However, the scientists succeeded in teleporting a three-level state, a so-called “qutrit”. In , unlike in classical computer science, “0” and “1” are not an ‘either/or’ – both simultaneously, or anything in between, is also possible. The Austrian-Chinese team has now demonstrated this in practice with a third possibility “2”.

Circa 2013


When a bomb explodes, you can’t outmaneuver it; you probably can’t even take cover quickly enough to protect yourself. Instead, you have to hope that there’s something—anything—already in the way that can shield you from the blast. Here are five of the best future bomb-proof materials that could end up saving lives in our increasingly uncertain future.

The first-ever artificial intelligence simulation of the universe seems to work like the real thing — and is almost as mysterious.

Researchers reported the new simulation June 24 in the journal Proceedings of the National Academy of Sciences. The goal was to create a virtual version of the cosmos in order to simulate different conditions for the universe’s beginning, but the scientists also hope to study their own simulation to understand why it works so well.

“It’s like teaching image-recognition software with lots of pictures of cats and dogs, but then it’s able to recognize elephants,” study co-author Shirley Ho, a theoretical astrophysicist at the Center for Computational Astrophysics in New York City, said in a statement. “Nobody knows how it does this, and it’s a great mystery to be solved.” [Far-Out Discoveries About the Universe’s Beginnings].