Toggle light / dark theme

Researchers from North Carolina State University have demonstrated that exosomes harvested from human skin cells can repair sun-damaged skin cells in mice. The therapy also appears to be more effective than retinol and stem cell treatment, and best of all, delivery of the therapy is needle-free.

What are exosomes?

Exosomes are essentially membrane-wrapped packages that contain proteins and other molecules, are produced and released by cells, and deliver messages to other cells. When nearby cells intercept these packages, they change their behavior based on the information contained in these packages. You might think of exosomes being almost like messages in bottles traveling in the bloodstream between cells.

We’re continuing to release talks from Ending Age-Related Diseases 2019, our highly successful two-day conference that featured talks from leading researchers and investors, bringing them together to discuss the future of aging and rejuvenation biotechnology.

Dr. Kelsey Moody gave a detailed presentation on macular degeneration, discussing its origins in the lysosomes and how it progresses along with how his company, Ichor Therapeutics, is developing an exogenous enzyme treatment that may cure this crippling disease.

Tourists could fly from Britain to Australia in just four hours by the 2030s with a new hypersonic engine being developed by UK scientists, the head of the UK Space Agency has said.

Reaction Engines, who are based in Oxfordshire, are in the process of building a hybrid hydrogen air-breathing rocket that will allow a plane to fly at Mach 5.4 — more than twice the speed of Concorde — then speed up to to Mach 25 in space.

Not only would the new ‘Sabre’ engine allow speedier journeys — with a flight between London and New York slashed to just over an hour — but the hydrogen/oxygen engine would be far greener and cheaper than current air travel.

There is never a dull day for participants of the CAVES campaign, ESA’s field training adventure that hones the communication, problem solving and teamwork skills an international crew will need to explore the tough, uncharted terrain of the Moon and Mars.

This week six astronauts turned ‘cavenauts’ from five space agencies headed underground in Slovenia, where they are currently living and working for the week. To keep the element of exploration, astronauts themselves do not know the exact location.

The goal is to run scientific experiments while managing the psychological toll of being in an extreme environment with a multinational crew.

The ultimate way of building up space structures would be to use material sourced there, rather than launched from Earth. Once processed into finished composite material, the resin holds the carbon fibres together as a solid rather than a fabric. The beams can be used to construct more complex structures, antennae, or space station trusses. Image credit: All About Space/Adrian Mann.

The International Space Station is the largest structure in space so far. It has been painstakingly assembled from 32 launches over 19 years, and still only supports six crew in a little-under-a-thousand cubic metres of pressurised space. It’s a long way from the giant rotating space stations some expected by 2001. The problem is that the rigid aluminium modules all have to be launched individually, and assembled in space. Bigelow Aerospace will significantly improve on this with their inflatable modules that can be launched as a compressed bundle; but a British company has developed a system that could transform space flight, by building structures directly in space.

Magna Parva from Leicester are a space engineering consultancy, founded in 2005 by Andy Bowyer and Miles Ashcroft. Their team have worked on a range of space hardware, from methods to keep Martian solar panels clear of dust, to ultrasonic propellant sensors, to spacecraft windows. But their latest project is capable of 3D printing complete structures in space, using a process called pultrusion. Raw carbon fibres and epoxy resin are combined in a robotic tool to create carbon composite beams of unlimited length – like a spider creating a web much larger than itself. Building structures in space has a range of compounding virtues, it is more compact than even inflatables, as only bulk fibre and resin need to be launched. Any assembled hardware that has to go through a rocket launch has to be made much stronger than needed in space to survive the launch, printed structures can be designed solely for their in space application, using less material still.

Last year, Princeton researchers identified a disturbing security flaw in which hackers could someday exploit internet-connected appliances to wreak havoc on the electrical grid. Now, the same research team has released algorithms to make the grid more resilient to such attacks.

In a paper published online in the journal IEEE Transactions on Network Science and Engineering, a team from Princeton’s Department of Electrical Engineering presented algorithms to protect against potential attacks that would spike demand from high-wattage devices such as air conditioners—all part of the “internet of things”—in an effort to overload the power grid.

“The cyberphysical nature of the grid makes this threat very important to counter, because a large-scale blackout can have very critical consequences,” said study author Prateek Mittal, an associate professor of electrical engineering.

Being able to accurately forecast how much solar energy reaches the surface of the Earth is key to guiding decisions for running solar power plants.

While day-ahead forecasts have become more accurate in recent years, the solar community lacks a unified verification procedure, and assessing how one compares to another is difficult. New work in the Journal of Renewable and Sustainable Energy looks to provide a standard of reference to the field.

Researcher Dazhi Yang proposed an improved way to assess day-ahead solar forecasting. The proposed method combines two popular reference methods for weather forecasting, namely persistence and climatology. Using a weighted linear combination of both methods, his approach provides a new way to gauge the skill of a forecaster.

IBM has a fleet of quantum computers. That much is fairly well known since IBM has been actively promoting quantum computing for several years. But IBM’s quantum story will get all the more interesting next month, when a 53 qubit computer joins the line, making it the most powerful quantum computer available for use outside IBM.

Next month, IBM will make a 53-qubit quantum available to clients via its Q Network quantum cloud computing service,” said Bits&Chips. That network, said Asian Scientist Magazine, and grew into an “ecosystem of Fortune 500 companies, , universities and national research labs.”

IBM’s new machine will be part of the company’s quantum computation center in Poughkeepsie, New York State, marking an unveiling of its 14th quantum computer. The center “is essentially a for IBM’s quantum machines,” said Frederic Lardinois in TechCrunch.