Toggle light / dark theme

Lab-grown meat is coming to your plate, and thanks to a new breakthrough in its development, it may feel like traditional meat.

Researchers at Harvard University have discovered a way to use edible gelatin scaffolds to mimic real meat’s texture and consistency. The team used cow and rabbit muscle cells on the scaffolds to recreate the long, thin fibers that give meat its distinctive feel.

The research was published Monday in the journal NPJ Science of Food. Kit Parker, senior author of the study, said in a statement that he first started thinking about the idea after being a judge on the Food Network.

After almost two years mired in extensive peer review, a landmark new study just published in the prestigious journal Nature is strongly associating excessive neural activity with shorter lifespans. The study suggests a protein known to suppress neural excitation affects a number of longevity pathways, effectively slowing the aging process.

The impressive research started several years ago with a gene expression study of post-mortem human brain tissue from hundreds of subjects. All the subjects were cognitively normal at the time of death. Bruce Yankner, senior author on the new study, says one thing quickly stood out to his team – the longer a person lived, the lower their expression of genes connected to neural excitement.

More specifically, the researchers identified upregulation of a protein called REST in the brains of those longest-lived subjects. REST first came to the attention of the research team back in 2014. The protein’s role in the brain was generally thought to only play a part in prenatal neurodevelopment, regulating the expression of genes in a developing brain.

WiTricity, a wireless power transfer specialist, announced licensing and technology transfer agreements with Green Power, which gears up for wireless charging of electric vehicles in South Korea.

Green Power is already engaged in wireless charging systems of vehicles from 1 to 300 kW, but not yet in electric cars, which might be possible using 11 kW WiTricity DRIVE 11 system.

As we can see in the image above, WiTricity’s wireless charging was already demonstrated in South Korea with Hyundai Kona Electric, but it’s probably still too early to judge that such an option is coming.

Reader, Tamia Boyden asks this question:

In the 90s, how could we access the internet without WiFi?

This post began as an answer to that question at Quora. In the process of answering, I compiled this history of public, residential Internet access. Whether you lived through this fascinating social and technical upheaval or simply want to explore the roots of a booming social phenomenon, I hope you will find the timeline and evolution as interesting as I do.

I have included my answer to Tamia’s question, below. But first, let’s get a quick snapshot of the highlights. This short bullet-list focuses on technical milestones, but the history below, explains the context, social phenomenon and implications.

Space — also commonly known as the final frontier — has left us in a state of awe since we ever first laid eyes on it. Inspired by numerous works of science fiction, we’ve made it a mission of ours to not only explore space but to colonize its planets as we continue searching for a secondary home.

And while our efforts have been mildly successful thus far, a group of non-biological “creatures” have already achieved the difficult task of conquering space. They’re known as robots.

Whether on the International Space Station (ISS) or on another planet, these automated machines have extended our reach into the cosmos far better than any actual human hand has accomplished. It all started in 1969 when the Soviets made the first attempt to land a robotic rover, known as Lunokhod 0, onto the Lunar surface of our Moon. Unfortunately for the Soviets, the rover was unsuccessful in its landing; instead crashing down after a failed start.

The achievement has been compared to the Wright brothers’ 12-second first flight at Kitty Hawk — an early, aspirational glimpse at a revolution to come. By providing exponentially greater calculation power than the machines we use today, quantum computers could one day transform the way we communicate ideas, conceal data and comprehend the universe.