Toggle light / dark theme

Whether it’s the smartphone in your pocket or the laptop on your desk, all current computer devices are based on electronic technology. But this has some inherent drawbacks; in particular, they necessarily generate a lot of heat, especially as they increase in performance, not to mention that fabrication technologies are approaching the fundamental limits of what is theoretically possible.

As a result, researchers explore alternative ways to perform computation that can tackle these problems and ideally offer some new functionality or features too.

One possibility lies in an idea that has existed for several decades but has yet to break through and become commercially viable, and that’s in optical computing.

🧠 Neuromodulation through the eyes 👀

Neuroplasticity, also known as neural plasticity or brain plasticity, is a process that involves adaptive structural and functional changes to the brain.

Founded and directed by Deborah Zelinsky, O.D., F.N.O.R.A., F.C.O.V.D.


Just as with eye-hand coordination, integration of vision and sound – eye-ear connection – must be developed. If the two senses are out of sync, a person can experience difficulties in academics, social situations and activities such as sports.

Physicists showed that photons can seem to exit a material before entering it, revealing observational evidence of negative time.

By Manon Bischoff & Jeanna Bryner

Quantum physicists are familiar with wonky, seemingly nonsensical phenomena: atoms and molecules sometimes act as particles, sometimes as waves; particles can be connected to one another by a “spooky action at a distance,” even over great distances; and quantum objects can detach themselves from their properties like the Cheshire Cat from Alice’s Adventures in Wonderland detaches itself from its grin. Now researchers led by Daniela Angulo of the University of Toronto have revealed another oddball quantum outcome: photons, wave-particles of light, can spend a negative amount of time zipping through a cloud of chilled atoms. In other words, photons can seem to exit a material before entering it.

Adding extra dimensions to a theory known as “fuzzy gravity” may help bridge the gap between quantum mechanics and relativity.

A recent study has made strides toward solving one of physics’ biggest puzzles: including all known particles and interactions into the theory of quantum gravity.

The solution is to modify the quantum description of gravity dubbed “fuzzy gravity” by introducing extra dimensions to spacetime. In this theory, spacetime is treated not as a continuous entity but by a grid of discrete points, and adding extra dimensions to this grid results in the occurrence of other fields and particles.

Understanding this unique form of superconductivity is crucial and could lead to exciting applications, like functional quantum computers.

A newly synthesized material made from rhodium, selenium, and tellurium, has been found to exhibit superconductivity at extremely low temperatures.

“The scientists believe the material’s behavior might stem from the excitation of quasiparticles — disturbances within the material that behave like particles — making it a ” topological” superconductor. This is significant because these quasiparticles’ quantum states could potentially be more resilient, remaining stable even when the material or its environment changes.

Tackling heat transfer, diamond layers help build 3D circuits with lower power consumption, faster signaling, and increased performance.

Scientists have discovered that adding diamond layers to computer chips significantly boosts heat transfer, paving the way for faster, more powerful computers.

Their research revealed that this combination improves heat transfer by tenfold, a feat that could lead to more efficient designs like 3D circuits, where electronic components are stacked vertically, and heterogeneous integration, which combines different types of components in a single chip.

By adding primordial magnetic fields to the Standard Model, researchers may solve the mystery of the Universe’s expansion.

Scientists have suggested a way to resolve a longstanding paradox known as the Hubble tension by taking primordial magnetic fields into account, which may have been generated in the early moments of the Universe.

“Primordial magnetic fields are the fields generated in the early Universe, such as during inflation, phase transitions, and other processes,” explained Yaoyu Li, a physicist at the Purple Mountain Observatory in China and one of the authors of the study. “These magnetic fields might evolve with the expansion of the Universe, be amplified and subsequently become galactic magnetic fields that we observe today.”