Toggle light / dark theme

New numbers from the digital asset management giant Grayscale show investors are collectively throwing big money into Ethereum for the first time, on top of record investment numbers for Bitcoin.

According to Grayscale’s Q1 2020 report, institutions are taking a serious interest in ETH, enough to print a record quarterly inflow into the Grayscale Ethereum Trust.

Spencer Noon, the head of crypto investments at DTC Capital, says the numbers show Ethereum has reached a turning point with high-net worth investors.

In this video, we’ll be discussing 5G – more specifically, what it is and its ability to change our world! 5G is a core technology in establishing the digital infrastructure of the future and will be essential in how all of the over 50 billion mobile and connected devices by 2020 will communicate together!

[0:25–2:55] First we’ll take a quick look at the history of mobile networks, and how they have evolved over the years to present day.

[2:55–14:20] Following that, we’ll focus on the technologies a 5G network is composed of and the improvements in speed, latency, bandwidth and energy consumption they will bring.

[14:20–23:40] Finally, we’ll discuss the transition process from 4G LTE networks to 5G as well as the timeframe for the release of 5G to the public.

The airspace above future battlefields is expected to be increasingly congested with large numbers of unmanned aerial systems, manned aircraft, munitions and missiles filling the skies. To de-conflict airspace activities of friendly forces and rapidly counter an enemy’s actions on the battlefield requires new technologies to effectively integrate effects from all domains.

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Let us know if you have suggestions for next week, and enjoy today’s videos.

In 2017, a team of USC Viterbi researchers created ADAMMS (Agile Dexterous Autonomous Mobile Manipulation System), a robot designed to support repetitive human tasks, like transporting equipment or tending a 3D printer at 3 a.m. ADAMMS can perform specific actions like opening doors or picking up objects autonomously. These researchers, including postdoctoral researcher in the USC Viterbi Department of Aerospace and Mechanical Engineering Pradeep Rajendran, AME Ph.D student Shantanu Thakar, Department of Computer Science master’s student Hyojeong Kim and M.S. AME’18 Vivek Annem, envisioned a tool that could support humans remotely.

Algae biofuel certainly faces an uphill battle these days, what with the global oil price crash and competition from electric vehicles. Nevertheless, there may be a glimmer of hope for algae biofuel fans, in the form of an ultra-fast 3D printer housed in a California laboratory. In an interesting sustainability twofer, the same machine might also spit out an assist for the world’s ailing coral reefs.

Inspired by how human bone and colorful coral reefs adjust mineral deposits in response to their surrounding environments, Johns Hopkins researchers have created a self-adapting material that can change its stiffness in response to the applied force. This advancement can someday open the doors for materials that can self-reinforce to prepare for increased force or stop further damage. A report of the findings was published today in Advanced Materials.

“Imagine a bone implant or a bridge that can self-reinforce where a high force is applied without inspection and maintenance. It will allow safer implants and bridges with minimal complication, cost and downtime,” says Sung Hoon Kang, an assistant professor in the Department of Mechanical Engineering, Hopkins Extreme Materials Institute, and Institute for NanoBioTechnology at The Johns Hopkins University and the study’s senior author.

While other researchers have attempted to create similar synthetic materials before, doing so has been challenging because such materials are difficult and expensive to create, or require active maintenance when they are created and are limited in how much stress they can bear. Having materials with adaptable properties, like those of wood and bone, can provide safer structures, save money and resources, and reduce harmful environmental impact.