Menu

Blog

Page 8166

Feb 6, 2019

This AI Can Tell Your Age

Posted by in categories: biotech/medical, life extension, robotics/AI

Combining Machine Learning and Your Gut

The link between the gut biome and age is described by longevity researcher Alex Zhavoronkov and a team of his colleagues at Insilico Medicine, an artificial intelligence startup focused on drug discovery, biomarker development, and aging research.

Read more

Feb 6, 2019

A Non-Toxic Thermoelectric Generator for Wearable Tech

Posted by in categories: biotech/medical, wearables

A new way to harvest electricity from body heat could inspire new wearable devices that never need to be plugged in. The millivolts of electricity this thermoelectric technology produces mandates slim power usage from any electronics plugged in to its feed. However, the developers say there already are fitness trackers and medical monitors today that could work within their device’s power envelope. The new, wearable thermoelectric generator is also sourced from non-toxic and non-allergenic substances, making it a viable candidate for wearable technology.


Made with cotton, this generator harvests body heat to power wearable electronics.

Read more

Feb 6, 2019

Bees have brains for basic math, study finds

Posted by in categories: mathematics, neuroscience

Researchers have found bees can do basic mathematics, in a discovery that expands our understanding of the relationship between brain size and brain power.

Building on their finding that honeybees can understand the concept of zero, Australian and French researchers set out to test whether bees could perform arithmetic operations like addition and subtraction.

Solving requires a sophisticated level of cognition, involving the complex mental management of numbers, long-term rules and short term working memory.

Read more

Feb 6, 2019

To conserve energy, AI clears up cloudy forecasts

Posted by in categories: mathematics, robotics/AI

If the forecast calls for rain, you’ll probably pack an umbrella. If it calls for cold, you may bring your mittens. That same kind of preparation happens in buildings, where sophisticated heating and cooling systems adjust themselves based on the predicted weather.

But when the forecast is imperfect—as it often is—buildings can end up wasting , just as we may find ourselves wet, cold or burdened with extra layers we don’t need.

A new approach developed by Fengqi You, professor in engineering at Cornell University, predicts the accuracy of the forecast using a machine learning model trained with years’ worth of data on forecasts and actual weather conditions. You combined that predictor with a that considers characteristics including the size and shape of rooms, the construction materials, the location of sensors and the position of windows.

Read more

Feb 6, 2019

World’s first graphene paint launches in the UK

Posted by in category: materials

Miracle material graphene – considered the strongest substance known to science – has been used to make eco-friendly paint by manufacturer Graphenstone.

The paint is made from a pure lime base that has been combined with graphene – a recently engineered material hailed as the thinnest, strongest and most conductive ever developed.

It will be distributed in the UK through The Graphene Company, which claims Graphenstone is the most environmentally friendly paint in the world.

Continue reading “World’s first graphene paint launches in the UK” »

Feb 6, 2019

Melbourne’s radical engineers storing electricity in ‘2D’ sheets

Posted by in categories: energy, futurism

A team of boffins in Port Melbourne may have the answer to our future energy storage needs.

Read more

Feb 6, 2019

These pants are designed to last 100 years

Posted by in category: futurism

Pants to die for–and in.

1 minute Read.

Read more

Feb 6, 2019

MIT’s self-healing metal fixes tiny flaws before they can create massive problems

Posted by in category: materials

Circa 2013


When a material is damaged, you wouldn’t expect pulling it apart to suddenly make it less damaged. This counterintuitive effect is exactly what researchers at MIT observed in an experimental model recently, and it was so unexpected that the results had to be rechecked before anyone was ready to believe it. Astonishingly, it seems that under the right conditions, metal with small flaws and cracks can heal itself when tension is applied — if you pull it apart, it puts itself back together.

Continue reading “MIT’s self-healing metal fixes tiny flaws before they can create massive problems” »

Feb 6, 2019

Controllable electron flow in quantum wires

Posted by in category: quantum physics

Princeton researchers have demonstrated a new way of making controllable “quantum wires” in the presence of a magnetic field, according to a new study published in Nature.

The researchers detected channels of conducting electrons that form between two states on the surface of a bismuth crystal subjected to a high magnetic field. These two states consist of electrons moving in elliptical orbits with different orientations.

To the team’s surprise, they found that the current flow in these channels can be turned on and off, making these channels a new type of controllable quantum wire.

Read more

Feb 6, 2019

Mega docking library poised to speed drug discovery

Posted by in categories: biotech/medical, computing, health, neuroscience

Researchers have launched an ultra-large virtual docking library expected to grow to more than 1 billion molecules by next year. It will expand by 1000-fold the number of such “make-on-demand” compounds readily available to scientists for chemical biology and drug discovery. The larger the library, the better its odds of weeding out inactive “decoy” molecules that could otherwise lead researchers down blind alleys. The project is funded by the National Institutes of Health.

“To improve medications for mental illnesses, we need to screen huge numbers of potentially therapeutic molecules,” explained Joshua A. Gordon, M.D., Ph.D., director of NIH’s National Institute of Mental Health (NIMH), which co-funded the research. “Unbiased computational modeling allows us to do this in a computer, vastly expediting the process of discovering new treatments. It enables researchers to virtually “see” a molecule with its receptor protein—like a ship in its harbor berth or a key in its lock—and predict its pharmacological properties, based on how the are predicted to interact. Only those relatively few candidate molecules that best match the target profile on the computer need to be physically made and tested in a wet lab.”

Bryan Roth, M.D., Ph.D., of the University of North Carolina (UNC) Chapel Hill, Brian Shoichet, Ph.D., and John Irwin, Ph.D., of the University of California San Francisco, and colleagues, report on their findings Feb. 6, 2019 in the journal Nature. The study was supported, in part, by grants from NIMH, National Institute of General Medical Sciences (NIGMS), the NIH Common Fund, and National Institute of Neurological Disorders and Stroke (NINDS).

Read more