Menu

Blog

Page 8123

Feb 12, 2020

AI Predicts Coronavirus Vulnerable to HIV’s Atazanavir

Posted by in categories: biotech/medical, robotics/AI

An international collaboration between researchers at Deargen and Dankook University in the Republic of Korea, and Emory University in the United States, have published a prediction model for antiviral drugs that may be effective on 2019-nCoV.

The work is published in the article “Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China, through a drug-target interaction deep learning model” posted on the bioRxiv preprint server.


When an international team used an AI model to suggest available drugs that could be used against 2019-nCoV, the top candidates targeted viral proteinases.

Continue reading “AI Predicts Coronavirus Vulnerable to HIV’s Atazanavir” »

Feb 12, 2020

Graphene forms under microscope’s eye

Posted by in categories: electronics, materials

You don’t need a big laser to make laser-induced graphene (LIG). Scientists at Rice University, the University of Tennessee, Knoxville (UT Knoxville) and Oak Ridge National Laboratory (ORNL) are using a very small visible beam to burn the foamy form of carbon into microscopic patterns.


Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope. The reduced size of the conductive material may make it more useful for flexible electronics.

Feb 12, 2020

Electrically pumped topological laser with valley edge modes

Posted by in category: quantum physics

Quantum cascade lasers are compact, electrically pumped light sources in the technologically important mid-infrared and terahertz region of the electromagnetic spectrum1,2. Recently, the concept of topology3 has been expanded from condensed matter physics into photonics4, giving rise to a new type of lasing5,6,7,8 using topologically protected photonic modes that can efficiently bypass corners and defects4. Previous demonstrations of topological lasers have required an external laser source for optical pumping and have operated in the conventional optical frequency regime5,6,7,8. Here we demonstrate an electrically pumped terahertz quantum cascade laser based on topologically protected valley edge states9,10,11. Unlike topological lasers that rely on large-scale features to impart topological protection, our compact design makes use of the valley degree of freedom in photonic crystals10,11, analogous to two-dimensional gapped valleytronic materials12. Lasing with regularly spaced emission peaks occurs in a sharp-cornered triangular cavity, even if perturbations are introduced into the underlying structure, owing to the existence of topologically protected valley edge states that circulate around the cavity without experiencing localization. We probe the properties of the topological lasing modes by adding different outcouplers to the topological cavity. The laser based on valley edge states may open routes to the practical use of topological protection in electrically driven laser sources.

Feb 12, 2020

Astronomers find a star dive-bombing our galaxy’s supermassive black hole

Posted by in category: cosmology

At the center of our galaxy lies Sgr A — a supermassive black hole. With over 4 million times the Sun’s mass, you can see why it gets that moniker.

One reason we know its mass is that there’s a cluster of young, luminous stars orbiting around it. These are called S stars, and they form a group around the black hole about a quarter of a light year across — a few trillion kilometers. One of these stars, S2, has an elliptical orbit that takes it to a distance of just 16 billion kilometers from the black hole as it travels on its elliptical orbit. Until recently, that star had the closest encounter we knew of.

Feb 12, 2020

How AI Is Advancing NeuroTech

Posted by in categories: biotech/medical, health, robotics/AI

The idea is to use AI to develop a platform for detecting biomarkers from neural data. Then long-life neural interfaces (connections that allow computers to read and write neural data directly to and from the body) could be combined with a deep intelligence system trained to assess biomarkers directly from neural data.

If the AI platform is able to understand the “language” of the nervous system it could be used in closed-loop experiments to test neuromodulation therapy on new targets. This could accelerate the development of treatments for a number of chronic conditions and would also be a big step closer to real-world clinical applications of AI within the body. This progress could create a new way to investigate medical conditions, accelerate the detection of neural biomarkers, and open the door to a new generation of AI-based neural medical procedures.

NeuroTech is one of the most promising areas of BioTech. In the last 20 years private capital funds invested more than $19 billion in the sector, and annual growth of investment in the sector is 31%. Some NeuroTech subsectors are already well-established with practical implementations and products on the market. Over the next several years, many early-stage startups will evolve into mature companies and bring new NeuroTech products to market. Advances in AI and increased integration of computers and biology could lead to improved brain health for people all over the world.

Feb 12, 2020

Newly developed non-addictive painkiller is stronger than morphine

Posted by in category: futurism

Read more

Feb 12, 2020

Giant star Betelgeuse might explode soon, and the next few weeks are critical

Posted by in category: space

Betelgeuse has been very volatile lately, and astronomers are watching to determine if it’s terminal or just going through a phase.

Feb 12, 2020

The Information in DNA Is Decoded by Transcription

Posted by in category: biotech/medical

DNA is essentially a storage molecule. It contains all of the instructions a cell needs to sustain itself. These instructions are found within genes, which are sections of DNA made up of specific sequences of nucleotides. In order to be implemented, the instructions contained within genes must be expressed, or copied into a form that can be used by cells to produce the proteins needed to support life.

The instructions stored within DNA are read and processed by a cell in two steps: transcription and translation. Each of these steps is a separate biochemical process involving multiple molecules. During transcription, a portion of the cell’s DNA serves as a template for creation of an RNA molecule. (RNA, or ribonucleic acid, is chemically similar to DNA, except for three main differences described later on in this concept page.) In some cases, the newly created RNA molecule is itself a finished product, and it serves an important function within the cell. In other cases, the RNA molecule carries messages from the DNA to other parts of the cell for processing. Most often, this information is used to manufacture proteins. The specific type of RNA that carries the information stored in DNA to other areas of the cell is called messenger RNA, or mRNA.

Feb 12, 2020

Scientists make major breakthrough in ‘quantum entanglement’ that could change how the internet works

Posted by in categories: internet, quantum physics

Researchers were able to demonstrate ‘spooky’ process happening at much bigger distances than ever before.

Feb 12, 2020

Researchers entangle quantum memory at facilities over 50km apart

Posted by in category: quantum physics

But the entanglement takes longer than the memory holds its state.