Menu

Blog

Page 7

Dec 2, 2024

A Critical Analysis of NeRF-Based 3D Reconstruction

Posted by in category: neuroscience

👋👋 ✍ Fabio Remondino et al.


This paper presents a critical analysis of image-based 3D reconstruction using neural radiance fields (NeRFs), with a focus on quantitative comparisons with respect to traditional photogrammetry. The aim is, therefore, to objectively evaluate the strengths and weaknesses of NeRFs and provide insights into their applicability to different real-life scenarios, from small objects to heritage and industrial scenes. After a comprehensive overview of photogrammetry and NeRF methods, highlighting their respective advantages and disadvantages, various NeRF methods are compared using diverse objects with varying sizes and surface characteristics, including texture-less, metallic, translucent, and transparent surfaces. We evaluated the quality of the resulting 3D reconstructions using multiple criteria, such as noise level, geometric accuracy, and the number of required images (i.e.

Dec 2, 2024

How Long Does a Neutron Live?

Posted by in category: particle physics

Particles called neutrons are typically very content inside atoms. They stick around for billions of years and longer inside some of the atoms that make up matter in our universe. But when neutrons are free and floating alone outside of an atom, they start to decay into protons and other particles. Their lifetime is short, lasting only about 15 minutes.

Physicists have spent decades trying to measure the precise lifetime of a neutron using two techniques, one involving bottles and the other beams. But the results from the two methods have not matched: they differ by about 9 seconds, which is significant for a particle that only lives about 15 minutes.

Now, in a new study published in the journal Physical Review Letters, a team of scientists has made the most precise measurement yet of a neutron’s lifetime using the bottle technique. The experiment, known as UCNtau (for Ultra Cold Neutrons tau, where tau refers to the neutron lifetime), has revealed that the neutron lives 14.629 minutes with an uncertainty of 0.005 minutes. This is a factor of two more precise than previous measurements made using either of the methods. While the results do not solve the mystery of why the bottle and beam methods disagree, they bring scientists closer to an answer.

Dec 2, 2024

Why Is Your Vision Blurry?

Posted by in category: biotech/medical

Blurry vision may not really be a problem with your eyes. It’s usually no big deal, but it could be a sign of a serious illness or medical emergency.

Dec 2, 2024

Children with autism have broad memory difficulties, Stanford Medicine-led study finds

Posted by in categories: biotech/medical, robotics/AI

Memory impairment in autism goes beyond poor facial recognition, a Stanford Medicine team showed. The finding suggests a wide role for memory in the neurobiology of the disorder.

Dec 2, 2024

The shape of light: Scientists reveal image of an individual photon for 1st time ever

Posted by in category: particle physics

Using a groundbreaking new technique, researchers have unveiled the first detailed image of a photon — a single particle of light — ever taken.

Dec 2, 2024

Fas-p53 pathway drives metabolic dysfunction and obesity-linked insulin resistance

Posted by in category: biotech/medical

đŸ”ŹđŸ”„đŸŒ±


Researchers unveil Fas-p53 axis as a key regulator in adipocyte metabolism, linking it to obesity and insulin sensitivity through energy expenditure and inflammation pathways.

Dec 2, 2024

Indian Ocean study finds an exception to Ekman’s theory of wind-driven ocean currents

Posted by in category: futurism

A team of planetary scientists and oceanographers from NOAA, the Indian National Center for Ocean Information Services, and the University of Zagreb, has found an example of an exception to Ekman’s theory of wind-driven ocean currents—wind and surface flow in the Bay of Bengal.

In their paper published in the journal Science Advances, the group analyzed several years of data sent by a buoy in the Indian Ocean, off the eastern coast of India.

In 1905, a Swedish oceanographer named Vagn Walfrid Ekman found evidence showing that ocean currents that flow near the surface, which were known to be impacted by , were found to deflect to the right in the Northern Hemisphere and to the left in the Southern Hemisphere. Work since that time has backed up the theory, which has come to be known as Ekman’s theory of wind-driven ocean currents.

Dec 2, 2024

Temporary tattoo printed directly on the scalp offers easy, hair-friendly solution for measuring brainwaves

Posted by in categories: biotech/medical, computing, neuroscience

For the first time, scientists have invented a liquid ink that doctors can print onto a patient’s scalp to measure brain activity. The technology, presented December 2 in the journal Cell Biomaterials, offers a promising alternative to the cumbersome process currently used for monitoring brainwaves and diagnosing neurological conditions. It also has the potential to enhance non-invasive brain-computer interface applications.

“Our innovations in sensor design, biocompatible ink, and high-speed printing pave the way for future on-body manufacturing of electronic tattoo sensors, with broad applications both within and beyond ,” says Nanshu Lu, the paper’s co-corresponding author at the University of Texas at Austin.

Electroencephalography (EEG) is an important tool for diagnosing a variety of neurological conditions, including seizures, , epilepsy, and brain injuries. During a traditional EEG test, technicians measure the patient’s scalp with rulers and pencils, marking over a dozen spots where they will glue on electrodes, which are connected to a data-collection machine via long wires to monitor the patient’s brain activity. This setup is time consuming and cumbersome, and it can be uncomfortable for many patients, who must sit through the EEG test for hours.

Dec 2, 2024

Experiment realizes quantum advantage in data storage with a photonic quantum processor

Posted by in categories: computing, encryption, quantum physics

In recent years, quantum physicists and engineers have been trying to develop quantum computer processors that perform better than classical computers on some tasks. Yet conclusive demonstrations proving that quantum systems perform better than their classical counterparts (i.e., realizations of a quantum advantage) remain scarce, due to various experimental challenges.

Researchers at Henan Key Laboratory of Quantum Information and Cryptography and the S. N. Bose National Center for Basic Sciences carried out an experiment aimed at establishing the of an elementary quantum system for .

Their paper, published in Physical Review Letters, demonstrates that a single qubit can outperform a classical bit in a communication task that does not involve any shared randomness (i.e., classically correlated random variables between communicating parties).

Dec 2, 2024

New method discovered for controlling molecular patterns on liquid droplets

Posted by in categories: biotech/medical, nanotechnology

A team of researchers has uncovered a previously unknown phenomenon that could improve the way we design materials at the molecular level. By unlocking a transformation between two types of structural defects on the surface of liquid droplets, the research opens new possibilities for controlling molecular patterns with unprecedented precision. This discovery has broad applications across a range of technologies, including vaccine design, the creation of self-assembling structures, and the synthesis of complex nanoparticles.

When guest molecules are positioned on liquid droplet surfaces, they typically spread out quickly due to diffusion, making it challenging to achieve over their placement. However, the researchers discovered that droplets made from certain materials undergo a process known as “interfacial freezing,” in which the droplet’s surface forms a crystalline molecular monolayer while the bulk of the droplet remains liquid.

This process leads to a with a hexagonal surface structure, where the curvature of the surface dictates the formation of structural defects. The defects thus formed are critical to controlling the behavior of guest molecules.

Page 7 of 12,103First4567891011Last