Toggle light / dark theme

Listen to the first notes of an old, beloved song. Can you name that tune? If you can, congratulations—it’s a triumph of your associative memory, in which one piece of information (the first few notes) triggers the memory of the entire pattern (the song), without you actually having to hear the rest of the song again. We use this handy neural mechanism to learn, remember, solve problems and generally navigate our reality.

“It’s a network effect,” said UC Santa Barbara mechanical engineering professor Francesco Bullo, explaining that aren’t stored in single brain cells. “Memory storage and are dynamic processes that occur over entire networks of neurons.”

In 1982, physicist John Hopfield translated this theoretical neuroscience concept into the artificial intelligence realm, with the formulation of the Hopfield network. In doing so, not only did he provide a mathematical framework for understanding memory storage and retrieval in the human brain, he also developed one of the first recurrent artificial neural networks—the Hopfield network—known for its ability to retrieve complete patterns from noisy or incomplete inputs. Hopfield won the Nobel Prize for his work in 2024.

Fresh drinking water is a vital yet limited resource that will only grow scarcer over the next few years, according to the World Resources Institute. Desalination, the process of removing salt from water, is an established method used to increase the fresh water supply, especially in coastal regions. However, current desalination systems are dependent on large-scale centralized infrastructure and filtration membranes prone to fouling and degradation.

A team of Rice University engineers has developed a system that could transform practices, making the process more adaptable, resilient and cheaper.

The new system, described in a study published in Nature Water, is designed to be powered by sunlight and uses a creative approach to heat recovery for extended water production—with and without sunshine. In contrast to conventional systems, the setup is made from nondegradable materials and can handle high-salinity brines.

A new study led by researchers from Michigan State University, Yale University and Johns Hopkins University reveals that ransomware attacks—which involve a hacker putting encryption controls into a file and then demanding a ransom to unlock the files—have become the primary driver of health care data breaches in the United States, compromising 285 million patient records over 15 years.

Published May 14 in JAMA Network Open, the study provides the first comprehensive analysis of ransomware’s role in health care breaches across all entities covered by privacy laws—hospitals, physician practices, and data clearinghouses—from 2010 to 2024.

“Ransomware has become the most disruptive force in health care cybersecurity,” said John (Xuefeng) Jiang, Eli Broad Endowed Professor of accounting and in the MSU Broad College of Business and lead author of the study. “Hospitals have been forced to delay care, shut down systems and divert patients—all while sensitive patient data is held hostage.”

A new study suggests that populations of artificial intelligence (AI) agents, similar to ChatGPT, can spontaneously develop shared social conventions through interaction alone.

The research from City St George’s, University of London and the IT University of Copenhagen suggests that when these large language model (LLM) (AI) agents communicate in groups, they do not just follow scripts or repeat patterns, but self-organize, reaching consensus on linguistic norms much like human communities.

The study, “Emergent Social Conventions and Collective Bias in LLM Populations,” is published in the journal Science Advances.

Optimus, Tesla’s humanoid robot, can dance like a human, a new video shared by CEO Elon Musk shows.

The viral clip, posted on X, features the robot moving with impressive fluidity, flaunting some cool human-like dance moves.

Musk shared the video without a caption, later adding, “This is real, real-time.”

A biotech startup from the U.S. is aiming to reshape the construction industry with the launch of a groundbreaking new material that mimics the look and feel of natural wood while outperforming high-grade steel in strength and durability.

Maryland-based firm InventWood, revealed that their engineering wood product called Superwood is a result of molecular-level transformation that turns natural wood into a material up to a dozen times stronger and 10 times tougher than its original form.