Menu

Blog

Page 7869

Mar 8, 2020

New Battery Technology Could Lead to Self-Powered Devices

Posted by in categories: computing, mobile phones, sustainability, transportation

The advancements that are being made in battery technology are pretty mind boggling. We are seeing devices that are drawing power from just about every source that is imaginable, and now there is battery technology from researchers at Imperial College London that may actually have devices that create their own power. From cell phones to cars and everything in between, there may eventually be nothing more needed that to actually use the device.

This incredible new battery technology works because of the material that is being used in the actual construction of the items. The reason that the new material is making headlines is because of the fact that it can be integrated into the design of an automobile and would make it lighter and more fuel efficient, but could actually supply power to recharge the battery of an electric car.

With the material being able to be strong enough for the construction of a car, there are many other possibilities for its use. Right off the bat, devices such as cell phones, iPods, laptops and anything else that you can think of that would use battery power would be able to benefit from this new battery technology.

Mar 8, 2020

Geneticists pump the brakes on DNA, revealing key developmental process

Posted by in categories: biotech/medical, genetics, media & arts

Researchers at Princeton University have revealed the inner workings of a gene repression mechanism in fruit fly embryos, adding insight to the study of human diseases.

Led by graduate student Shannon Keenan, the team used light to activate in developing and traced the effects on a protein called Capicua, or Cic. Located in a cell’s nucleus, Cic binds to DNA and performs the specialized task of silencing . The study, published in Developmental Cell and made available online March 5, reveals the dynamics of gene repression by this protein.

In a complex piece of music, the silences running through the melody contribute as much to the score’s effect as the sounded notes. The that control development rely on highly sophisticated temporal patterns of gene activation and repression to create life’s beautiful symphonies. When a pattern is disrupted, it’s like a wrong note in the music. In this case, Cic is a repressor protein that silences certain parts of the genome, allowing other genes to express in harmony with one another. Understanding how repressors like Cic work allows researchers to better conduct the orchestra.

Mar 8, 2020

Betelgeuse: Astronomers determine the reason for strange dimming of far-away star

Posted by in category: space

Well this is anticlimactic, to say the least.

Mar 8, 2020

Canceled Meeting Makes a Virtual Rebound

Posted by in category: futurism

After the cancellation of the March Meeting, researchers quickly assembled online talks and provided a glimpse of a virtual-conferencing future.

Mar 7, 2020

COSMOS SEASON 3 TRAILER | National Geographic

Posted by in category: futurism

COSMOS: POSSIBLE WORLDS is helmed by Carl Sagan’s collaborator Ann Druyan, who boldly carries the torch forward with the 3rd season of the most beloved science show on the planet. Series premieres 3/9, at 8/7c, on Nat Geo; hosted by Neil deGrasse Tyson.
➡ Subscribe: http://bit.ly/NatGeoSubscribe

About National Geographic:
National Geographic is the world’s premium destination for science, exploration, and adventure. Through their world-class scientists, photographers, journalists, and filmmakers, Nat Geo gets you closer to the stories that matter and past the edge of what’s possible.

Continue reading “COSMOS SEASON 3 TRAILER | National Geographic” »

Mar 7, 2020

Space engineer who hates smartphones builds cellphone with rotary dial

Posted by in categories: mobile phones, space travel

She builds tools for space exploration — but her cellphone is strictly down to earth.

Justine Haupt, 34, hates smartphones. She hates the way they work, and she hates the way they rule our lives.

“I work in technology but I don’t like the culture around smartphones,” says the astronomy instrumentation engineer from Long Island.

Mar 7, 2020

Origin and evolution of pathogenic coronaviruses

Posted by in categories: biotech/medical, genetics, government

The origins are still too unknown. This is entirely new life a more parasitic lifeform. Bit still new lifeforms entirely. My experiencers tell me of alien origin though the rate of spread also the complexity. No human could make this no even government can make this. We can mimic life not create something new. Sure new things can be added but the signature tells me it is definitely of alien origin. Not even nature can create something this quick nor even governments. Sure there may be like similar things but why does it spread so fast in near systematic precision. Which leads to essentially of exterrestial origin. This is essentially new life we are dealing with.


Nat Rev Microbiol. 2019 Mar;17:181–192. doi: 10.1038/s41579-018‑0118-9.

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two highly transmissible and pathogenic viruses that emerged in humans at the beginning of the 21st century. Both viruses likely originated in bats, and genetically diverse coronaviruses that are related to SARS-CoV and MERS-CoV were discovered in bats worldwide. In this Review, we summarize the current knowledge on the origin and evolution of these two pathogenic coronaviruses and discuss their receptor usage; we also highlight the diversity and potential of spillover of bat-borne coronaviruses, as evidenced by the recent spillover of swine acute diarrhoea syndrome coronavirus (SADS-CoV) to pigs.

Mar 7, 2020

Chimeric Vaccine

Posted by in category: biotech/medical

Whether man made or alien made or whatever a chimeric vaccine could essentially cure the illness.


Chimeric vaccines consisting of a series of immunodominant epitopes have been explored in the development of vaccines against malaria ( Hanson and Edelman, 2004 ; Caro-Aguilar et al., 2005 ), group A streptococci ( Dale, 1999 ; Hu et al., 2002 ; Kotloff et al., 2004 ; Kotloff and Dale, 2004 ; Dale et al., 2005 ; McNeil et al., 2005 ), and several viruses ( Wang et al., 1999d ; Bouche et al., 2005 ; Fan et al., 2005 ; Apt et al., 2006 ). Data suggest that a broadly protective OspC vaccine will require the inclusion of epitopes from approximately 28 OspC types ( Earnhart and Marconi, 2007c ). Such a construct is predicted to provide protection against all major Lyme disease spirochete species associated with human disease, and to be effective in both Europe and North America. Possible cross-protection elicited by some epitopes may reduce the total number of epitopes required to achieve this goal.

A prototype tetravalent chimeric recombinant OspC-based vaccine has been produced that incorporates epitope-containing regions from types A, B, K, and D. This “ABKD” vaccine elicited antibodies in mice that bind OspC as presented on the surface of intact and viable spirochetes and mediate bactericidal activity by a complement-dependent mechanism ( Buckles et al., 2006 ; Earnhart et al., 2007 ). It is noteworthy that a decrease in epitope-specific titer was observed for epitopes progressing from the N- to the C-terminus of the chimeric protein. The antibody titer to the type D epitope was 1.7 logs lower than that observed for the N-terminally located type A epitope ( Earnhart et al., 2007 ). This effect did not appear to be due to C-terminal degradation of the construct since the addition of C-terminal tags that have been reported to stabilize recombinant proteins did not improve antibody titer ( Earnhart and Marconi, 2007a ).

Mar 7, 2020

Computer model of face processing could reveal how the brain produces richly detailed visual representations so quickly

Posted by in category: robotics/AI

When we open our eyes, we immediately see our surroundings in great detail. How the brain is able to form these richly detailed representations of the world so quickly is one of the biggest unsolved puzzles in the study of vision.

Scientists who study the brain have tried to replicate this phenomenon using models of vision, but so far, leading models only perform much simpler tasks such as picking out an object or a face against a cluttered background. Now, a team led by MIT cognitive scientists has produced a computer model that captures the human visual system’s ability to quickly generate a detailed scene description from an image, and offers some insight into how the brain achieves this.

“What we were trying to do in this work is to explain how perception can be so much richer than just attaching semantic labels on parts of an image, and to explore the question of how do we see all of the physical world,” says Josh Tenenbaum, a professor of computational cognitive science and a member of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Center for Brains, Minds, and Machines (CBMM).

Mar 7, 2020

Study: Modern electric grid needs smarter modeling for improved resilience

Posted by in categories: energy, engineering

Power systems and communication networks are increasingly interdependent, which can affect the response and recovery times when problems occur.

Today’s smart involves components that talk to each other, sending signals over networks to keep flowing smoothly and efficiently. But what happens when the “conversation” goes quiet?

A team of researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the Illinois Institute of Technology recently explored the literature on this link between the and its communication networks, finding that many studies do not adequately consider the two-way nature of this relationship and its impact on grid resilience. Their paper, “Electric Power Grid Resilience with Interdependencies between Power and Communication Networks—A Review,” was recently published in IET Smart Grid, a journal from the Institution of Engineering and Technology.