Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Breakthrough greatly enhances ultrafast resolution achievable with X-ray free-electron lasers

A large international team of scientists from various research organizations, including the U.S. Department of Energy’s (DOE) Argonne National Laboratory, has developed a method that dramatically improves the already ultrafast time resolution achievable with X-ray free-electron lasers (XFELs). It could lead to breakthroughs on how to design new materials and more efficient chemical processes.

Researchers unveil issues with nuclear theory, observe no magic behavior at N=32 in charge radii of potassium isotopes

Measuring the size of atomic nuclei has sometimes been useful to probe aspects of nucleon-nucleon interaction and the bulk properties of nuclear matter. The charge radius of atomic nuclei, which can be extracted using laser spectroscopy techniques, is sensitive to both the bulk properties of nuclear matter and particularly subtle details of the interactions between protons and neutrons.

CrownBio and JSR Life Sciences Partner with Cambridge Quantum Computing to Leverage Quantum Machine Learning for Novel Cancer Treatment Biomarker Discovery

Crown Bioscience (CrownBio), JSR Life Sciences and Cambridge Quantum Computing (CQC) today announced a partnership agreement to explore the application of quantum technology to drive the identification of multi-gene biomarker discovery for oncology drug discovery.

Color blindness-correcting contact lenses

Imagine seeing the world in muted shades—gray sky, gray grass. Some people with color blindness see everything this way, though most can’t see specific colors. Tinted glasses can help, but they can’t be used to correct blurry vision. And dyed contact lenses currently in development for the condition are potentially harmful and unstable. Now, in ACS Nano, researchers report infusing contact lenses with gold nanoparticles to create a safer way to see colors.

Eerie Stars of ‘Dark Matter’ May Be Behind Largest Gravitational Wave Detection Yet

On 21 May 2019, from a distance of 7 billion light-years away, our gravitational wave detectors were rocked by the most massive collision yet. From analysis of the signal, astronomers concluded that the detection was the result of two black holes smashing together, weighing in at 66 and 85 times the mass of the Sun respectively.

But what if it was something else? A new study offers a different interpretation of the event. It’s possible, according to an international team of astrophysicists, that the two objects were not black holes at all, but mysterious, theoretical objects called boson stars — potentially made up of elusive candidates for dark matter.

The gravitational wave event, called GW 190521, was a spectacular discovery. The object that resulted from the merger of the two objects would have been a black hole at around 142 times the mass of the Sun — within the intermediate mass range that no black hole had ever been detected before, called the black hole upper mass gap.