Toggle light / dark theme

A team of scientists from Stanford University is working with researchers at the Molecular Foundry, a nanoscience user facility located at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), to develop a gene-targeting, antiviral agent against COVID-19.

Last year, Stanley Qi, an assistant professor in the departments of bioengineering, and chemical and at Stanford University and his team had begun working on a technique called PAC-MAN—or Prophylactic Antiviral CRISPR in —that uses the gene-editing tool CRISPR to fight influenza.

But that all changed in January, when news of the COVID-19 pandemic emerged. Qi and his team were suddenly confronted with a mysterious new virus for which no one had a clear solution. “So we thought, ‘Why don’t we try using our PAC-MAN technology to fight it?’” said Qi.

Researchers from the Faculty of Physics at the University of Warsaw, ETH in Zurich and the University of Cambridge have synthesized and analysed active microparticles self-propelling in a fluid and reversing their propulsion direction depending on the wavelength of illuminating light. A research article summarising their work has recently been published in Nature Communications.

Active matter encompasses systems with self-propelling elements that draw energy from the environment and convert it into kinetic energy. This is currently a lively discipline in physics, spanning across many time and length scales, concerning, e.g., the behaviour of birds in flocks (such as murmurations of starlings), schools of fish (as a form of protection against predators), and also bacteria in biofilms and other aquatic microswimmers. It focuses both on the behaviour of individual elements and understanding their mechanisms of energy conversion, interaction and coupling with the environment so important for the survival, and on the collective effects and emergence of new phenomena in large populations. Both can be successfully described on different levels of precision, starting from simplistic minimal coarse-grained models, and up to refined numerical simulations.

Bacteria, algae, spermatozoa, ciliates and other are an important group of active swimmers. Exploring the physical basis of their dynamics is often complicated by their immense diversity, biological complexity, and high sensitivity to external conditions. The aquatic microworld is, however, governed by the universal laws of fluid dynamics, which put limitations on all organisms.

Taking inspiration from nature’s nanotech that creates the stunning color of butterfly wings, a University of Central Florida researcher is creating technology to make extremely low-power, ultra-high-definition displays and screens that are easier on the eyes.

The new technology creates digital displays that are lit by surrounding and are more natural looking than current display technologies that rely on energy-intensive bright lights hidden behind screens. The findings were published Wednesday in the journal Proceedings of the National Academy of Sciences.

“This display is more of a natural look than your current computer or smartphone screens,” said Debashis Chanda, an associate professor in UCF’s NanoScience Technology Center and principal investigator of the research. “It is like seeing a portrait on the wall at your house. It doesn’t have that glare or extra light. It is more like looking at the .”

Optics-based technologies such as optical fibers have strongly influenced the age of wired communication. Now they look set to revolutionize wireless communications as well and solve key issues with traditional radio-based approaches by using steerable, narrow infrared beams to send large amounts of data to user devices individually in an energy efficient and secure manner. Researchers at Eindhoven University of Technology are developing new methods for infrared wireless communications that could change how we access data forever.

The modern world is fast becoming a wireless, infrared world! Until now, the majority of wireless communications, both indoor and outdoor, have been radio-based. Although signal modulation techniques can squeeze more data into the limited radio-frequency spectrum and spatial multiplexing can combine multiple data signals into one signal without requiring more spectrum, we are struggling to meet our exponentially growing data demands.

The solution could be optical wireless communications, which use over a wide spectral range from a few hundred nanometers to a few micrometers that includes visible and infrared radiation. Ton Koonen and researchers at the Institute for Photonic Integration are designing prototype systems with a capacity of more than two thousand times that of current shared WiFi systems. They have presented their work in an invited paper for the themed issue, “Optical Wireless Communication,” of the Royal Society’s Philosophical Transactions A, the oldest ongoing scientific journal in the world. Isaac Newton’s first paper, “New Theory about Light and Colours,” was published in the same journal in 1672.

Panelists: andy gelme, jon oxer, greg adamson, jeremy negal at humanity+ melbourne.

Panelists and audience members weigh in on a variety of topics: technology adoption across demographics, technology used to harvest your data / the rights to your data, technology changing the world — what used to be value choices with regard to technology use and adoption now just seem to be matters of fact, and social implications of technology in general.

While the video is newly produced, the conference was held in 2011.


A giant, sprawling structure almost a mile long has been discovered at the southern tip of Mexico, with researchers saying it may represent the oldest and largest monument of the ancient Maya civilisation ever found.

The site, called Aguada Fénix, is located in the state of Tabasco, at the base of the Gulf of Mexico. It’s so vast for its age, the find is making archaeologists recalibrate their timelines on the architectural capabilities of the mysterious Maya.

Before now, the Maya site of Ceibal (aka Seibal) was thought to be the oldest ceremonial centre, dating back to around 950 BCE.