Toggle light / dark theme

It’s easy to take time’s arrow for granted — but the gears of physics actually work just as smoothly in reverse. Maybe that time machine is possible after all?

An experiment from 2019 shows just how much wiggle room we can expect when it comes to distinguishing the past from the future, at least on a quantum scale. It might not allow us to relive the 1960s, but it could help us better understand why not.

Researchers from Russia and the US teamed up to find a way to break, or at least bend, one of physics’ most fundamental laws of energy.

A bug in a protocol used by virtually all Internet of Things devices exposes millions of users to potential attack, a researcher reported Monday. The fault centers on the Universal Plug and Play protocol, a 12-year-old implementation that simplifies connections among network devices such as computers, printers, mobile devices and Wi-Fi access points.

Billions of devices are theoretically vulnerable, the report stated, but only those with UPnP activated currently face risk of attack.

Turkish security engineer Yunus Çadirci uncovered the UPnP bug, named CallStranger, that could be exploited to gain access to any smart such as , printers and routers that are connected to the Internet. Once access is gained, malicious code can be sent through network firewalls and other security defenses and reach internal data banks.

Frequency multipliers, circuits that can produce signals with multiple frequencies, are essential components for a number of technological tools, particularly wireless communications systems. Most existing multipliers, however, are built using filtering and amplification circuits that are bulky and rapidly drain a lot of power.

Researchers at NaMLab in Germany have recently devised a single ferroelectric field-effect transistor that can serve both as a full-wave rectifier and frequency multiplier. The device they developed, presented in a paper published in Nature Electronics, is fully reconfigurable and energy-efficient, as it can be used in isolation, not requiring any additional circuits.

“Our institute (NaMLab) has been doing research on ferroelectric hafnium oxide (HfO2) since this material’s ferroelectric properties were discovered in 2007,” Halid Mulaosmanovic, one of the researchers who carried out the study, told TechXplore. “An attractive electronic device that can be made using this material is a ferroelectric field-effect transistor (FeFET), which resembles conventional logic transistors, but has a ferroelectric layer in the gate stack.”

Scientists in Europe have created embryo-like structures that mimic a crucial yet enigmatic stage of human development.

The structures, created from stem cells and called gastruloids, are the first to form a 3D assembly that lays out how the body will take shape. The gastruloids developed rudimentary components of a heart and nervous system, but lacked the components to form a brain and other cell types that would make them capable of becoming a viable fetus.

Researchers are creating ever more sophisticated artificial structures to study embryo development in the lab. The latest method for making these structures, published in Nature today1, could shed light on the causes of pregnancy loss and early developmental disorders, such as congenital heart conditions and spina bifida.

Genetic engineering and other advanced technologies may need to come into play if people want to live in Mars.


Last month’s NASA and SpaceX successful launch of astronauts from US soil for the first time in almost a decade, has reignited discussion about space travel to Mars and beyond. SpaceX is fronted by the billionaire Elon Musk.

Sky News reports:

A mysterious cloud containing radioactive ruthenium-106, which moved across Europe in autumn 2017, is still bothering Europe’s radiation protection entities. Although the activity concentrations were innocuous, they reached up to 100 times the levels of what had been detected over Europe in the aftermath of the Fukushima accident. Since no government had assumed responsibility, a military background could not be ruled out.

Researchers at the Leibniz University Hannover and the University of Münster (both Germany) were able to confirm that the cloud did not originate from military sources—but rather from civilian nuclear activities. Hence, the release of ruthenium from a reprocessing plant for nuclear fuels is the most conclusive scenario for explaining the incident in autumn 2017. The study has been published in the journal Nature Communications.

BioMed Realty, a real estate development firm that specializes in life-sciences and biotech space, is taking over development of a multi-acre site in Somerville’s Assembly Square to create a “best-in-class life science office park.”

BioMed has agreed to acquire an existing office at 5 Middlesex Ave. in Somerville, as well as 7.5 acres of land for future development, from a joint venture of Novaya Real Estate Ventures and Cresset Development. The firms did not disclose terms of the agreement.

BioMed, which investment giant Blackstone acquired in 2016, has a local portfolio spanning 3.5 million square feet, including a number of properties in Cambridge, as well as facilities in Watertown and Boston’s Longwood Medical Area. Its most recent project proposal in Cambridge is for a 16-story office and lab at 585 Third St.

Duke University researchers have developed an AI tool that can turn blurry, unrecognizable pictures of people’s faces into eerily convincing computer-generated portraits, in finer detail than ever before.

Previous methods can scale an image of a face up to eight times its original resolution. But the Duke team has come up with a way to take a handful of pixels and create realistic-looking faces with up to 64 times the resolution, ‘imagining’ features such as fine lines, eyelashes and stubble that weren’t there in the first place.

“Never have super-resolution images been created at this resolution before with this much detail,” said Duke computer scientist Cynthia Rudin, who led the team.