Toggle light / dark theme

Every year, 2 million black hole mergers are missed — Australian scientists work out how to detect them, revealing a lost 8 billion light-years of Universe evolution.

Last year, the Advanced LIGO –VIRGO gravitational-wave detector network recorded data from 35 merging black holes and neutron stars. A great result — but what did they miss? According to Dr. Rory Smith from the ARC Centre of Excellence in Gravitational Wave Discovery at Monash University in Australia — it’s likely there are another 2 million gravitational wave events from merging black holes, “a pair of merging black holes every 200 seconds and a pair of merging neutron stars every 15 seconds” that scientists are not picking up.

Dr. Smith and his colleagues, also at Monash University, have developed a method to detect the presence of these weak or “background” events that to date have gone unnoticed, without having to detect each one individually. The method — which is currently being test driven by the LIGO community — “means that we may be able to look more than 8 billion light-years further than we are currently observing,” Dr. Smith said.

Like many things about Elon Musk, Tesla’s approach to achieving autonomous driving is polarizing. Bucking the map-based trend set by industry veterans such as Waymo, Tesla opted to dedicate its resources in pursuing a vision-based approach to achieve full self-driving instead. This involves a lot of hard, tedious work on Tesla’s part, but today, there are indications that the company’s controversial strategy is finally paying off.

In a recent talk, Tesla AI Director Andrej Karpathy discussed the key differences between the map-based approach of Waymo and Tesla’s camera-based strategy. According to Karpathy, Waymo’s use of pre-mapped data and LiDAR make scaling difficult, since vehicles’ autonomous capabilities are practically tied to a geofenced area. Tesla’s vision-based approach, which uses cameras and artificial intelligence, is not. This means that Autopilot and FSD improvements can be rolled out to the fleet, and they would function anywhere.

This rather ambitious plan for Tesla’s full self-driving system has caught a lot of skepticism in the past, with critics pointing out that map-based FSD is the way to go. Tesla, in response, dug its heels in and doubled down on its vision-based initiative. This, in a way, resulted in Autopilot improvements and the rollout of FSD features taking a lot of time, particularly since training the neural networks, which recognize objects and driving behavior on the road, requires massive amounts of real-world data.

By Valentina Lagomarsino figures by Sean Wilson

Nearly four months ago, Chinese researcher He Jiankui announced that he had edited the genes of twin babies with CRISPR. CRISPR, also known as CRISPR/Cas9, can be thought of as “genetic scissors” that can be programmed to edit DNA in any cell. Last year, scientists used CRISPR to cure dogs of Duchenne muscular dystrophy. This was a huge step forward for gene therapies, as the potential of CRISPR to treat otherwise incurable diseases seemed possible. However, a global community of scientists believe it is premature to use CRISPR in human babies because of inadequate scientific review and a lack of international consensus regarding the ethics of when and how this technology should be used.

Early regulation of gene-editing technology.

Industrial powerhouse Honeywell says its latest quantum computer is now the fastest in the world. How quickly real-world applications will develop or how swiftly they’ll be able to impact industries or affect cryptographic systems such as Bitcoin is the subject of rigorous debate.

In an announcement on Thursday, Honeywell says its team of scientists, engineers and technicians has delivered a quantum volume of 64. The metric measures both the total number of the computer’s qubits and how well it handles them. IBM’s machine scored a 32, suggesting Honeywell’s quantum computer is twice as fast.

Honeywell’s machine is designed to add up to 640,000 quantum bits (qubits) as the system scales. Tony Uttley, president of Honeywell’s quantum computing division, tells CNET.

Summary: Findings reveal individual differences in the severity of depressive symptoms following a relationship breakdown are associated with changes in resting-state whole-brain dynamics.

Source: UPF Barcelona

During a person’s life, the experience of a stressful life event can lead to the development of depressive symptoms, even in a non-clinical population. For example, a relationship breakup is a fairly common event and is a powerful risk factor for quality of life, in addition to increasing the risk of a major depressive disorder.

For instance, suppose a neural network has labeled the image of a skin mole as cancerous. Is it because it found malignant patterns in the mole or is it because of irrelevant elements such as image lighting, camera type, or the presence of some other artifact in the image, such as pen markings or rulers?

Researchers have developed various interpretability techniques that help investigate decisions made by various machine learning algorithms. But these methods are not enough to address AI’s explainability problem and create trust in deep learning models, argues Daniel Elton, a scientist who researches the applications of artificial intelligence in medical imaging.

Elton discusses why we need to shift from techniques that interpret AI decisions to AI models that can explain their decisions by themselves as humans do. His paper, “Self-explaining AI as an alternative to interpretable AI,” recently published in the arXiv preprint server, expands on this idea.

Elon Musk’s SpaceX has applied to offer high-speed internet to Canadians living in remote areas by beaming it to them via satellites.

The Globe and Mail newspaper first reported that space exploration company SpaceX applied with Canada’s telecom regulator, the Canadian Radio-television and Telecommunications Commission (CRTC), for what’s known as a Basic International Telecommunications Services, or BITS, licence.

Researchers at the Yerkes National Primate Research Center and the Emory Vaccine Center (EVC) are first to show a new adjuvant, 3M-052, helps induce long-lasting immunity against HIV. The study results are published today in Science Immunology.

In this pre– that included 90 , the researchers showed 3M-052, a new, synthetic small molecule that targets a specific receptor (TLR 7/8), successfully induced vaccine-specific, long-lived bone marrow plasma cells (BM-LLPCs), which are critical for durable immunity. In a striking observation, 3M-052-induced BM-LLPCs were maintained at high numbers for more than one year after vaccination. This prolonged interval is not only feasible in monitoring pre–, it is also highly informative in down selecting vaccine candidates.

First author Sudhir Pai Kasturi, Ph.D., an assistant professor in the Department of Pathology and Laboratory Medicine and a research assistant professor at Yerkes and the EVC, says, “We have known adjuvants are critical immunity-boosting supplements that help improve the effectiveness of vaccines. Until now, however, it has been unclear which class of adjuvants can promote stable and long-lived immunity in nonhuman primate models. Our study provides that information.”