Toggle light / dark theme

A weakness of lasers integrated onto microchips is how they can each generate only one color of light at a time. Now researchers have come up with a simple integrated way to help these lasers fire multiple colors, a new study finds.

When it comes to data and telecommunications applications, integrated lasers would ideally generate multiple frequencies of light to boost how much information they could transmit. One way to achieve this end is an “optical frequency comb,” which converts a pulse of light from a single laser into a series of pulses equally spaced in time and made up of different, equally spaced frequencies of light.

Generating combs long required equipment that was expensive, bulky, complex, and delicate. However, in the past decade or so, researchers began developing miniature and integrated comb systems. These microcombs passed light from a laser through a waveguide to a microresonator—a ring in which circulating light could become a soliton, a kind of wave that preserves its shape as it travels. When solitons left these microresonators, they each did so as very stable, regular streams of pulses—in other words, as frequency combs.

Taking a cross-country roadtrip in your electric vehicle is a little more feasible thanks to Electrify America. Its first coast to coast EV fast charging route is now complete, and the company plans to have another route finished by September. The routes provide high-powered chargers to all EV brands, and on average, the stations are spaced about 70 miles apart, so EV owners can travel beyond a single charge without being stranded.

The first route stretches over 2,700 miles from Washington DC to Los Angeles. It follows Interstates 15 and 70 and passes through 11 states. The second route will connect Jacksonville and San Diego.

Circa 2010


Updated at 18:30 EST to correct timeline of prediction to 2030 from 2020 Reverse-engineering the human brain so we can simulate it using computers may be just two decades away, says Ray Kurzweil, artificial intelligence expert and author of the best-selling book The Singularity is Near. It would be the first step toward creating machines \[…\].

In the archery world, few technologies have evolved as rapidly as crossbows. Manufacturers continue to make them lighter, faster and more reliable with each new release. There has also been a reduction in the profile of these bows with the trend moving towards more compact reverse limb bows in recent years.

Now there’s a company making a crossbow with an entirely new limb system that makes for a slimmer package than ever before.

Introducing the Lancehead F1 torsion limb crossbow. We interviewed Lancehead Founder and CEO Jon Polanich to get the lowdown on this fascinating new design.

A trove of DNA sequences from 141,456 people — and counting — offers researchers an unparalleled look at genetic variation across the general population1,2. The resource has been helping researchers to identify variants that contribute to autism since it was released online about four years ago3,4.

The genomes of autistic people harbor hundreds of potentially harmful mutations. But to firmly connect a specific variant to the condition, researchers need to see if it is common among typical people — a sign that that variant may actually be benign.

In 2014, researchers debuted one of the first tools to probe the prevalence of a mutation in the general population. Known as the Exome Aggregation Consortium (ExAC), it contained 60,000 sequences of exomes — the protein-coding regions of the genome5.

The National Weather Service in Melbourne has issued a severe thunderstorm warning for southeastern St. Lucie County and northeastern Martin County until 10 p.m.

At 9:18 p.m., a severe thunderstorm was located 7 miles north of Indiantown, moving northeast at 15 mph.

Locations impacted include Port Saint Lucie, Walton, Stuart, Palm City and Saint Lucie Nuclear Power Plant.

R. Abbott 1, T. D. Abbott 2, S. Abraham 3, F. Acernese 4,5, K. Ackley 6, C. Adams 7, R. X. Adhikari 1, V. B. Adya 8, C. Affeldt 9,10, M. Agathos 11,12, K. Agatsuma13, N. Aggarwal 14, O. D. Aguiar 15, A. Aich 16, L. Aiello 17,18, A. Ain 3, P. Ajith 19, S. Akcay 11,20, G. Allen 21, A. Allocca 22, P. A. Altin 8, A. Amato 23, S. Anand 1, A. Ananyeva 1, S. B. Anderson 1, W. G. Anderson 24, S. V. Angelova 25, S. Ansoldi 26,27, S. Antier 28, S.

Among the different platforms for quantum information processing, individual electron spins in semiconductor quantum dots stand out for their long coherence times and potential for scalable fabrication. The past years have witnessed substantial progress in the capabilities of spin qubits. However, coupling between distant electron spins, which is required for quantum error correction, presents a challenge, and this goal remains the focus of intense research. Quantum teleportation is a canonical method to transmit qubit states, but it has not been implemented in quantum-dot spin qubits. Here, we present evidence for quantum teleportation of electron spin qubits in semiconductor quantum dots. Although we have not performed quantum state tomography to definitively assess the teleportation fidelity, our data are consistent with conditional teleportation of spin eigenstates, entanglement swapping, and gate teleportation. Such evidence for all-matter spin-state teleportation underscores the capabilities of exchange-coupled spin qubits for quantum-information transfer.

Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment.