Toggle light / dark theme

And, if its in trees, guess where else it is, Crisis Yet? or nah.


It is well known that more and more plastic waste is ending up in soil and bodies of water. Researchers are particularly concerned about tiny micro-and nano-sized particles. It remains unclear how and to what extent they are able to enter living organisms—and what effect they may have on metabolism.

Serious Question, does anyone in here know people who made said AI or run named company? would be interested in system described.


Artificial intelligence is being tested at the Integrated Control Center in Ludwigshafen to save precious time during emergency calls. For example, a computer voice translates for callers who speak a foreign language.

According to an SWR report, the Integrated Control Center in Ludwigshafen is using artificial intelligence (AI) to speed up emergency call handling. Until now, it took valuable minutes when callers only spoke a foreign language. Dispatchers had to quickly find a colleague who could translate, which cost time and caused stress, says Manuel Fischer, head of the integrated rescue service department.

From the article:

When Saha and Sinha took a closer look at the resulting equations, they realized that they could express the number pi in this way, as well as the zeta function, which is the heart of the Riemann conjecture, one of the greatest unsolved mysteries in mathematics.


Two physicists have come across infinitely many novel equations for pi while trying to develop a unifying theory of the fundamental forces.

A new set of NASA science experiments and technology demonstrations will arrive at the lunar South Pole in 2027 following the agency’s latest CLPS (Commercial Lunar Payload Services) initiative delivery award. Intuitive Machines of Houston will receive $116.9 million to deliver six NASA payloads to a part of the Moon where nighttime temperatures are frigid, the terrain is rugged, and the permanently shadowed regions could help reveal the origin of water throughout our solar system.

Part of the agency’s broader Artemis campaign, CLPS aims to conduct science on the Moon for the benefit of all, including experiments and demos that support missions with crew on the lunar surface.

“This marks the 10th CLPS delivery NASA has awarded, and the fourth planned for delivery to the South Pole of the Moon,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “By supporting a robust cadence of CLPS flights to a variety of locations on the lunar surface, including two flights currently planned by companies for later this year, NASA will explore more of the Moon than ever before.”

Innovative research has led to a new treatment for pancreatic cancer that utilizes nanoparticles to stimulate immune responses and improve drug delivery.

This strategy has produced significant results, with eight out of nine mice showing tumor improvements and two seeing their tumors completely eradicated. This approach holds promise for broader applications in oncology.

Innovative Pancreatic Cancer Therapy Development.

How can ultrasonic waves be used to treat chronic pain? This is what a recent study published in the journal Pain hopes to address as a team of researchers investigated how a noninvasive treatment known as Diadem, which is a novel biomedical device designed to use ultrasonic waves for combating chronic pain. This study holds the potential to help researchers develop more effective methods at treating chronic pain aside from invasive, surgical treatments.

For the study, the researchers enlisted 20 patients who suffer from chronic pain to participate in trials for the Diadem device or sham stimulations, the latter of which involved auditory masking that has been used in previous research. Each patient received two 40-minute sessions comprised of either the Diadem or sham treatments, followed by being monitored for one week. In the end, the researchers found that 60 percent of patients were received the Diadem treatments reported improved pain management on day 1 and day 7. In contrast, 15 percent and 20 percent of patients who received the sham treatment reported the same for day 1 and day 7, respectively.

“If you or your relatives suffer from chronic pain that does not respond to treatments, please reach out to us; we need to recruit many participants so that these treatments can be approved for the general public,” said Dr. Jan Kubanek, who is an assistant professor in the Department of Biomedical Engineering at the University of Utah and a co-author on the study. “With your help, we think chronic pain can be effectively silenced. And with new pain treatment options, we can tackle the opioid crisis, too.”

The results published by Tong et al. 60 reconcile the previous observations that increased power across a broad range of frequencies is composed of multiple HFO bursts detected at discrete frequencies. 32, 33, 85 In Figs 2 and 3, we summarize the general mechanism from micro-scale ensembles of firing neurons, through bursts of individual HFOs detected in particular trials at specific frequencies, to the resultant trial-averaged enhanced power across a broad frequency range. Coordinated firing in response to a stimulus presentation gives rise to HFOs at particular frequencies depending on the size and spread of the underlying neural ensemble (Fig. 3A and C). Other ensembles generate HFOs at particular frequencies in response to stimuli in subsequent trials. Eventually, multiple trials result in a uniform shift in power across a broad frequency range of the spectrum relative to a pre-stimulus baseline (Fig. 3C). Detections from specific trials can be displayed together as points at their corresponding peak-amplitude on a cumulative time-frequency plot, producing a pattern closely overlapping with the trial-averaged power spectrogram (Fig. 3D).

This is an explanation for the resultant broadband shift in power across the high-frequency spectrum associated with cognitive and motor tasks and increased neural firing, 92–95 which argued against oscillations at particular frequency bands. If the intermediate step of detecting individual bursts of oscillations on a trial-by-trial basis is skipped, the overall trial-averaged power will be most highly correlated with general firing rates in the entire neural population without any common temporal pattern or coordination to oscillations. If, however, independent constituent bursts of oscillations and the underlying firing in subsets of neural ensembles are first resolved one by one, then multiple patterns of coordinated activity emerge. In this large-scale mechanism, coordinated electrical activity from multiple neural sources generating oscillations at distinct frequencies could explain the broadband shifts in power across the spectrum. 24 Separate sources of HFO bursts detected at various frequencies remain to be demonstrated on the macro-and micro-recording scales.

Assuming that individual HFOs can indeed be separated based on their spectral features 96–98 and thus identify particular sources of LFP activities, it should be possible to resolve the neurophysiological substrates of memory and cognition proposed in our title question. High frequency LFP activities were suggested to track particular neuronal assemblies on the level of micro-contact LFP in rodents. 91 Intracranial recordings in non-human primates 86, 87 and in human patients 22, 32, 85 can also resolve distinct bursts in the frequency-time space of individual trials, which could hypothetically be the features of particular neuronal assemblies. 24 HFO bursts beyond the ripple frequency range, which were shown to be generated very locally on the scale of a single cortical column, 64 would correspond to arguably the fundamental level of neural organization and information processing. 99 In the next section, we will review the roles of temporal coordination in gamma and higher frequencies in supporting processes of memory and cognition.

Astronaut John McFall hopes to see an ISS astronaut with a disability fly by 2030 — video.


A European Space Agency (ESA) reserve astronaut, McFall was selected for the program in 2022 based on his experience as a trauma and orthopedic specialist, surgeon and exercise scientist. McFall also has lived experience with a disability as he has used prosthetics regularly since the amputation of his right leg at age 19, following a motorcycle accident. (He even won a bronze medal in the 2008 Paralympics in the 100-meter sprint, class T42.)

A recent study dubbed “Fly!” — in which McFall played a key role — found there would be no major issues to International Space Station missions should an astronaut use a prosthesis on board. There is more work to be done, but the goal is for it all to culminate in flying “someone with a physical disability” to the ISS, McFall told Space.com in an exclusive interview on Aug. 8. “By the end of this decade, hopefully that would have happened.”