Toggle light / dark theme

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

A Rutgers-led team has created ultra-small dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

“Our findings are quite important and intriguing in a number of ways, and more research is needed to understand how these exotic crystals work and to fulfill their potential,” said senior author Tewodros (Teddy) Asefa, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University-New Brunswick. He’s also a professor in the Department of Chemical and Biochemical Engineering in the School of Engineering.

Circa 2015


A nighttime shot shows some of the antennas of the Owens Valley Long Wavelength Array in California, with the center of our galaxy in the background. (Credit: Gregg Hallinan)

The Owens Valley Long Wavelength Array (OV-LWA) is already producing unprecedented videos of the radio sky. Astronomers hope that it will help them piece together a more complete picture of the early universe and learn about extrasolar space weather—the interaction between nearby stars and their orbiting planets.

Victims included Democratic presidential candidate Joe Biden, former President Barack Obama and Tesla CEO Elon Musk. Accounts for those people, and others, posted tweets asking followers to send bitcoin to a specific anonymous address.

For their efforts, the scammers received over 400 payments in bitcoin, with a total value of $121,000 at Thursday’s exchange rate, according to an analysis of the Bitcoin blockchain performed by Elliptic, a cryptocurrency compliance firm.

Elliptic co-founder Tom Robinson said it’s a low sum for what appears to be a historic hack that Twitter said involved an insider.

Drone Waiters-Boss Magazine
According to Forbes, payroll costs consume up to 25 per cent of a restaurant’s profit. Restaurateurs in Sydney and other parts of Australia hope to combat that expense by following in the footsteps of venues in Asia that have used drone waiters instead of human wait staff.

Faster and Human-Free Waiter drones are robotic devices that soar through the air with platters of food and glasses of beverages perched on top. Customers place their orders via electronic devices or other means, then the kitchen sends out their food on trays carried by machines rather than humans. Each drone can carry up to 4.4 pounds of cargo.

Sensors on the sides of the drones prevent them from crashing into objects or people as they navigate busy restaurants. While this strategy eliminates the human element that many experts believe is essential to the hospitality industry, the waiter drones’ success in Asia suggests they might prove a valuable contribution to restaurants in Australia.

In the movie “Ant-Man,” the title character can shrink in size and travel by soaring on the back of an insect. Now researchers at the University of Washington have developed a tiny wireless steerable camera that can also ride aboard an insect, giving everyone a chance to see an Ant-Man view of the world.

The camera, which streams video to a smartphone at 1 to 5 frames per second, sits on a mechanical arm that can pivot 60 degrees. This allows a viewer to capture a high-resolution, panoramic shot or track a moving object while expending a minimal amount of energy. To demonstrate the versatility of this system, which weighs about 250 milligrams—about one-tenth the weight of a playing card—the team mounted it on top of live beetles and insect-sized robots.

The results will be published July 15 in Science Robotics.

SYDNEY, Australia — When you look up at the night sky, which constellations can you make out? Can you spot the Big Dipper? Do you see Orion’s Belt? Counting stars is pretty difficult in areas with lots of light, like major cities. A study says even in the clearest skies, you’re still seeing turbulence in the atmosphere that makes stars twinkle. Want a truly perfect view of outer space? An international research team has found the spot, but you’ll need to bundle up. It’s in Antarctica!

Stars aren’t supposed to twinkle?

According to the University of New South Wales, turbulence causes light coming from stars to bend as it reaches the Earth’s surface. That instability in the air gives stars their trademark twinkling effect.

face_with_colon_three yay closer to foglet bodies: 3.


Is the T-1000 no longer science fiction?

It is a human dream to realize a robot with automatic mechanical functions similar to the robots presented in several science-fiction movies and series such as “Ex Machina”, “Black Mirror”, “The Terminator”, etc.

More specifically, the idea of a liquid-metal-based robot able to transform its structure from solid to liquid, slip through narrow channels, and self-repair from any physical damage has always fascinated the scientific community engaged in cutting-edge technological discoveries. Beside the science-fiction background, micromachines able to gain energy from chemical reactions are attracting lots of attention as they emerged as ideal candidates for microrobots used in the field of microfabrication, detection/sensing, and personalized drug delivery.

Scientists are ramping up their efforts in the search for signs of alien life.

Experts at the SETI Institute, an organization dedicated to tracking extraterrestrial intelligence, are developing state-of-the-art techniques to detect signatures from space that indicate the possibility of extraterrestrial existence.

These so-called “technosignatures” can range from the chemical composition of a planet’s atmosphere, to laser emissions, to structures orbiting other stars, among others, they said.