Toggle light / dark theme

Across all species, critical skills are passed on from parents to offspring through communication. Researchers at the University Hospital Bonn (UKB) and the Researchers at the University of Bonn showed that effective communication relies on how both the sender and receiver represent information. Their study reveals how this process underlies training efficacy and task performance. Their results have been published in the journal Nature Communications.

Communication—be it through sounds, smells or movements—is crucial for survival. Its is fundamental to cognition, as our task descriptions in the brain are shaped not only by sensory experiences, but also by the information communicated to us.

“We know from our everyday lives that social communication is essential to our learning abilities in the real world, which is summed up by the saying ‘teaching is learning for the second time,” says Prof. Tatjana Tchumatchenko, from the Institute of Experimental Epileptology and Cognition Research at the UKB and member of the Transdisciplinary Research Area (TRA) “Modelling” at the University of Bonn.

The achievement marks a way toward “fault-tolerant” quantum computing as it achieved record-low error rates in prototype quantum computer. It’s also expected to lead to the development of more stable quantum computers.

IQM maintains that qubit relaxation time T1 of 0.964 +- 0.092 milliseconds and dephasing time T2 echo of 1.155 +- 0.188 milliseconds was demonstrated on a planar transmon qubit on a silicon chip fabricated in IQM´s own fabrication facilities.

The coherence times, characterized by the relaxation time T1 and the dephasing time T2 echo, are among the key metrics for assessing the performance of a single qubit, as they indicate how long quantum information can be stored in a physical qubit, according to the company.

Extracellular vesicles (EVs) or exosomes are nanosized extracellular particles that contain proteins, DNA, non-coding RNA (ncRNA) and other molecules, which are widely present in biofluids throughout the body. As a key mediator of intercellular communication, EVs transfer their cargoes to target cells and activate signaling transduction. Increasing evidence shows that ncRNA is involved in a variety of pathological and physiological processes through various pathways, particularly the inflammatory response. Macrophage, one of the body’s “gatekeepers”, plays a crucial role in inflammatory reactions. Generally, macrophages can be classified as pro-inflammatory type (M1) or anti-inflammatory type (M2) upon their phenotypes, a phenomenon termed macrophage polarization.

Proposed experiments will search for signs that spacetime is quantum and can exist in a superposition of multiple shapes at once.

By Nick Huggett & Carlo Rovelli

There is a glaring gap in our knowledge of the physical world: none of our well-­established theories describe gravity’s quantum nature. Yet physicists expect that this quantum nature is essential for explaining extreme situations such as the very early universe and the deep interior of black holes. The need to understand it is called the problem of “quantum gravity.”

Researchers have discovered that DNA methylation is crucial for reprogramming astrocytes into stem cells in the adult mouse brain, especially after ischemic injury, with potential implications for regenerative medicine.