Menu

Blog

Page 7599

May 17, 2020

Interferon-α2b Treatment for COVID-19

Posted by in categories: biotech/medical, chemistry, genetics

The global pandemic of COVID-19 cases caused by infection with SARS-CoV-2 is ongoing, with no approved antiviral intervention. We describe here the effects of treatment with interferon (IFN)-α2b in a cohort of confirmed COVID-19 cases in Wuhan, China. In this uncontrolled, exploratory study, 77 adults hospitalized with confirmed COVID-19 were treated with either nebulized IFN-α2b (5 mU b.i.d.), arbidol (200 mg t.i.d.) or a combination of IFN-α2b plus arbidol. Serial SARS-CoV-2 testing along with hematological measurements, including cell counts, blood biochemistry and serum cytokine levels, and temperature and blood oxygen saturation levels, were recorded for each patient during their hospital stay. Treatment with IFN-α2b with or without arbidol significantly reduced the duration of detectable virus in the upper respiratory tract and in parallel reduced duration of elevated blood levels for the inflammatory markers IL-6 and CRP. These findings suggest that IFN-α2b should be further investigated as a therapy in COVID-19 cases.

In December 2019, an outbreak of pneumonia was reported in Wuhan, Hubei province, China, resulting from infection with a novel coronavirus (CoV), severe acute respiratory syndrome (SARS)-CoV-2. SARS-CoV-2 is a novel, enveloped betacoronavirus with phylogenetic similarity to SARS-CoV (1). Unlike the coronaviruses HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU, that are pathogenic in humans and are associated with mild clinical symptoms, SARS-CoV-2 resembles both SARS-CoV and Middle East respiratory syndrome (MERS), with the potential to cause more severe disease. A critical distinction is that CoVs that infect the upper respiratory tract tend to cause a mild disease, whereas CoVs that infect both upper and lower respiratory tracts (such as SARS-CoV-2 appears to be) may cause more severe disease. Coronavirus disease (COVID)-19, the disease caused by SARS-CoV-2, has since spread around the globe as a pandemic.

In the absence of a SARS-CoV-2-specific vaccine or an approved antiviral, a number of antivirals are currently being evaluated for their therapeutic effectiveness. Type I IFNs-α/β are broad spectrum antivirals, exhibiting both direct inhibitory effects on viral replication and supporting an immune response to clear virus infection (2). During the 2003 SARS-CoV outbreak in Toronto, Canada, treatment of hospitalized SARS patients with an IFN-α, resulted in accelerated resolution of lung abnormalities (3). Arbidol (ARB) (Umifenovir) (ethyl-6-bromo-4-[(dimethylamino)methyl]-5-hydroxy-1-methyl-2 [(phenylthio)methyl]-indole-3-carboxylate hydrochloride monohydrate), a broad spectrum direct-acting antiviral, induces IFN production and phagocyte activation. ARB displays antiviral activity against respiratory viruses, including coronaviruses (4).

May 16, 2020

Bizarre new species discovered… on Twitter

Posted by in category: futurism

While many of us use social media to be tickled silly by cat videos or wowed by delectable cakes, others use them to discover new species. Included in the latter group are researchers from the University of Copenhagen’s Natural History Museum of Denmark. Indeed, they just found a new type of parasitic fungus via Twitter.

It all began as biologist and associate professor Ana Sofia Reboleira of the National Natural History Museum was scrolling though Twitter. There, she stumbled upon a photo of a North American shared by her US colleague Derek Hennen of Virginia Tech. She spotted a few tiny dots that struck her well-trained eyes.

“I could see something looking like on the surface of the millipede. Until then, these fungi had never been found on American millipedes. So, I went to my colleague and showed him the image. That’s when we ran down to the museum’s collections and began digging,” explains Ana Sofia Reboleira.

May 16, 2020

José Cordeiro — THE DEATH OF DEATH (Longevity #0001)

Posted by in categories: cryonics, life extension, quantum physics, Ray Kurzweil, robotics/AI, singularity, transhumanism

https://facebook.com/LongevityFB https://instagram.com/longevityyy/ https://twitter.com/Longevityyyyy https://linkedin.com/company/longevityy/

- Please also subscribe and hit the notification bell and click “all” on these YouTube channels:

Continue reading “José Cordeiro — THE DEATH OF DEATH (Longevity #0001)” »

May 16, 2020

Lizard genome sequence solves a human genetic mystery

Posted by in categories: biotech/medical, genetics

Circa 2011


320 million years ago, mammals and reptiles reached an evolutionary parting of the ways. We’ve now sequenced a lizard genome for the first time ever, and it’s vastly different from our own…but in a few crucial ways, it’s shockingly similar.

May 16, 2020

Samsung Surprise As World’s First Smartphone With Quantum Technology Launches May 22

Posted by in categories: mobile phones, quantum physics

A Samsung Galaxy smartphone incorporating quantum technology is due to launch in Korea next week.

May 16, 2020

The 12 Longest Living Animals That Roam the Earth

Posted by in category: life extension

In the human world, if you make it up to 90 years old or more, you’re considered to have remarkable longevity. But in the animal world, 90 years old is still considered a baby’s age. Some of these creatures have been around for so long that nowadays they’re considered living fossils since dinosaurs are their direct relatives.

Bright Side is encouraging you to take a look at some creatures that have been on Earth way longer than the human species and some of them were born when the Age of Discovery had not even started. And there’s a surprising bonus waiting for you at the end of the article!

May 16, 2020

A neuronal signature for monogamous reunion

Posted by in category: neuroscience

Monogamous prairie voles form lifelong pair bonds, but the neuronal dynamics that underlie bond formation and maintenance in this species remain largely unknown. We performed imaging of populations of neurons while voles interacted with their pair-bonded partner or a novel vole before and after bond formation. We identified neurons that were active during partner approach and found that this subset of cells was distinct from those that were active during novel approach. Furthermore, the number of partner approach cells increased following bond formation, reflecting the emergence of bonding behaviors and correlating with bond strength. This discovery sheds light on how pair bonds may be encoded within the brain and what changes as bonds mature.

Pair-bond formation depends vitally on neuromodulatory signaling within the nucleus accumbens, but the neuronal dynamics underlying this behavior remain unclear. Using 1-photon in vivo Ca2+ imaging in monogamous prairie voles, we found that pair bonding does not elicit differences in overall nucleus accumbens Ca2+ activity. Instead, we identified distinct ensembles of neurons in this region that are recruited during approach to either a partner or a novel vole. The partner-approach neuronal ensemble increased in size following bond formation, and differences in the size of approach ensembles for partner and novel voles predict bond strength. In contrast, neurons comprising departure ensembles do not change over time and are not correlated with bond strength, indicating that ensemble plasticity is specific to partner approach.

May 16, 2020

The claustrum coordinates cortical slow-wave activity

Posted by in categories: genetics, neuroscience

During sleep and awake rest, the neocortex generates large-scale slow-wave (SW) activity. Here, we report that the claustrum coordinates neocortical SW generation. We established a transgenic mouse line that enabled the genetic interrogation of a subpopulation of claustral glutamatergic neurons. These neurons received inputs from and sent outputs to widespread neocortical areas. The claustral neuronal firings mostly correlated with cortical SW activity. In vitro optogenetic stimulation of the claustrum induced excitatory postsynaptic responses in most neocortical neurons, but elicited action potentials primarily in inhibitory interneurons. In vivo optogenetic stimulation induced a synchronized down-state featuring prolonged silencing of neural activity in all layers of many cortical areas, followed by a down-to-up state transition. In contrast, genetic ablation of claustral neurons attenuated SW activity in the frontal cortex. These results demonstrate a crucial role of claustral neurons in synchronizing inhibitory interneurons across wide cortical areas for the spatiotemporal coordination of SW activity.

May 16, 2020

Rapid growth of new atmospheric particles

Posted by in category: particle physics

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.

May 16, 2020

Origin of temporal changes of inner-core seismic waves

Posted by in category: futurism

Temporal changes of inner-core (IC) seismic phases have been confirmed with high-quality waveform doublets. However, the nature of the temporal changes is still controversial. We investigated systematically the temporal changes of IC refracted (PKIKP) and reflected (PKiKP) waves with a large data set of waveform doublets. We used non-IC reference phase (mainly SKP), which eliminated ambiguity where the temporal changes come from. We found that the temporal changes have always started at refracted PKIKP and the travel time changes correlate better with PKIKP. Changes in reflected PKiKP can be easily contaminated by the strong and time-varying PKIKP and coda wave trains and therefore are not reliable indicators for IC boundary changes. Combining with previous observations, we conclude that the temporal changes come mostly (if not all) from the IC interior and IC surface changes as the sole source suggested previously can be ruled out. The differential rotation of the IC shifting its heterogeneous uppermost structures is the simplest and most reasonable explanation for the origin of the time-varying IC waves. A rotation rate of about 0.05–0.1° per year with possible decadal fluctuation can reconcile all temporal change observations from body waves, IC scattering, and normal mode data.