Jul 9, 2020
House defense spending bill would give the MQ-9 Reaper drone a second life
Posted by Saúl Morales Rodriguéz in categories: drones, military
Appropriators are also backing the purchase of a bunch of other aircraft across the services.
Appropriators are also backing the purchase of a bunch of other aircraft across the services.
Hope mission will gather sorely needed data on the Martian atmosphere, boost Emirati space science.
Three times in the coming month or so, rockets will light their engines and set course for Mars. A trio of nations — the United States, China and the United Arab Emirates (UAE) — will be sending robotic emissaries to the red planet, hoping to start new chapters of exploration there.
Each mission is a pioneer in its own right. The United States is sending its fifth rover, NASA’s most capable ever, in the hope of finding evidence of past life on Mars and collecting a set of rocks that will one day be the first samples flown back to Earth. China aims to build on its lunar-exploration successes by taking one of its rovers to Mars for the first time. And the UAE will be launching an orbiter — the first interplanetary mission by any Arab nation — as a test of its young but ambitious space agency.
It is far from a given that all these missions will make it; Mars is notorious as a graveyard for failed spacecraft. But if they do, they will substantially rewrite scientific understanding of the planet. The two rovers are heading for parts of Mars that have never been explored(see ‘Landing sites’), and the UAE’s orbiter will track the changing Martian atmosphere.
Elon Musk is hell bent on finding a way to dig tunnels cheaper and more quickly in order to avoid his least favourite thing: traffic.
Weird enzyme enables researchers to study — and potentially treat — deadly diseases. Feat enables researchers to study — and perhaps treat — deadly diseases.
When trying to complete a task we are constantly bombarded by distracting stimuli. How does the brain filter out these distractions and enable us to focus on the task at hand? Psychologists at the University of California, Riverside, have made a discovery that could lead to an answer.
Experimenting on mice, they located the precise spot in the brain where distracting stimuli are blocked. The blocking disables the brain from processing these stimuli, which allows concentration on a particular task to proceed.
Edward Zagha, an assistant professor of psychology, and his team trained mice in a sensory detection task with target and distractor stimuli. The mice learned to respond to rapid stimuli in the target field and ignore identical stimuli in the opposite distractor field. The team used a novel imaging technique, which allows for high spatiotemporal resolution with a cortex-wide field of view, to find where in the brain the distractor stimuli are blocked, resulting in no further signal transmission within the cortex and, therefore, no triggering of a motor response.
Child psychiatrist Jon Jureidini and philosopher Leemon McHenry dispute the assumption that all approved drugs and medical devices are safe and effective. They warn that when clinical science is hitched to the pharmaceutical industry’s dash for profits, the scientific method is undermined by marketing spin and cherry-picking of data. They propose a solution inspired by philosopher of science Karl Popper: take drug testing out of the hands of manufacturers.”
It’s time to take trials out of the hands of pharmaceutical makers, argues the latest in a long line of books on corruption and the pharmaceutical industry.
A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits1. Colour centres in diamond have emerged as leading solid-state ‘artificial atom’ qubits2,3 because they enable on-demand remote entanglement4, coherent control of over ten ancillae qubits with minute-long coherence times5 and memory-enhanced quantum communication6. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of ‘quantum microchiplets’—diamond waveguide arrays containing highly coherent colour centres—on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters7,8 and general-purpose quantum processors9,10,11,12.
Neutron stars are an end state of stellar evolution, says astrophysicist Paul Lasky, at Australia’s Monash University and OzGrav. “They consist of the densest observable matter in the universe, under conditions that are impossible to produce in the laboratory, and theoretical modeling of the matter requires extrapolation by many orders of magnitude beyond the point where nuclear physics is well understood.”
“Gravitational-wave astronomy is reshaping our understanding of the universe,” said Lasky, about a new study co-authored by the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav) that makes a compelling case for the development of “NEMO” —a new observatory in Australia that could deliver on some of the most exciting gravitational-wave science next-generation detectors have to offer, but at a fraction of the cost.
The study today presents the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimized to study nuclear physics with merging neutron stars, using high circulating laser power, quantum squeezing and a detector topology specially designed to achieve the high frequency sensitivity necessary to probe nuclear matter using gravitational waves.