Toggle light / dark theme

This is an essay written at the end of the first year of an oncology fellowship that was filled with ward months seeing leukemia, lymphoma, solid malignancies, and multiple hematologic abnormalities. In the future, I may look back at this essay and see myself as naïve, truly optimistic, and not yet weathered and jaded from years of success and failure. What I have learned can be summarized here, as many of us do while looking at consults or book s, by skipping to the end. Remember: don’t quit! There are good days and bad days for us, but no matter how high the high or low the low, the patient is the one with the disease. Screen and enroll patients in clinical trials, as research brought us the treatment choices we have today. Dr Michael Craig, one of my mentors in fellowship, left a note near the fellows’ microscope. I have stared at acute leukemia through those eyepieces, and made therapeutic decisions and diagnoses that changed people’s lives. The note encompasses what we do, what we represent as oncologists. It reads: “Cancer sucks. What can you do? Call me with questions.”

Richard Pazdur, MD

The US Food and Drug Administration today approved Cometriq (cabozantinib) to treat medullary thyroid cancer that has spread to other parts of the body (metastasized).

Keyed locks are relatively easy to pick if you’ve spent enough time mastering the skill. But researchers at the National University of Singapore have just made it even easier. If you can use a smartphone to record a sound, you can capture all the information you need to create a working duplicate of a key.

The newfound vulnerability – although it’s more a case of modern technology compromising an outdated technology – was discovered by cyberphysical systems researcher Soundarya Ramesh and a team at the National University of Singapore. The attack, called SpiKey, works on what are known as pin tumbler locks that are opened using a key with a unique ridge pattern on its edge. As the key slides into the lock, the ridges push six metal spring-backed pins to different heights which, when all are properly aligned, allow a tumbler to turn and a lock to be opened. They’re one of the most common types of locks out there, used in everything from doors to padlocks, which makes this attack especially concerning.

To open a pin tumbler lock without the key, a locksmith (or lock pick) uses a specialised set of tools to manually adjust the height of each pin, one by one, until they figure out the unique arrangement needed for the tumbler to turn. The SpiKey technique is magnitudes easier, and requires little to no special skills, aside from the ins and outs of operating a 3D printer.

Pleasanton-based green energy startup NDB, Inc. has reached a key milestone today with the completion of two proof of concept tests of its nano diamond battery (NDB). One of these tests took place at the Lawrence Livermore National Laboratory, and the other at the Cavendish Laboratory at Cambridge University, and both saw NDB’s battery tech manage a 40% charge, which is a big improvement over the 15% charge collection efficiency (effectively energy lossiness relative to maximum total possible charge) of standard commercial diamond.

NDB’s innovation is in creating a new, proprietary nano diamond treatment that allows for more efficient extraction of electric charge from the diamond used in the creation of the battery. Their goal is to ultimately commercialize a version of their battery that can self-charge for up to a maximum lifespan of 28,000 years, created from artificial diamond-encased carbon-14 nuclear waste.

This battery doesn’t generate any carbon emissions in operation, and only requires access to open air to work. And while they’re technically batteries, because they contain a charge which will eventually be expended, they provide their own charge for much longer than the lifetime of any specific device or individual user, making them effectively a charge-free solution.

Basically it behaves like a bioweapon as it has a spread that has encompassed the earth.


US intelligence officials are probing the possibility that America’s enemies might use the coronavirus as a bioweapon, according to an alarming report.

The Department of Defense is monitoring for the potential of the virus to be weaponized, possibly against prominent, high-level targets, three people close to the matter told Politico.

A Pentagon spokesman, Lt. Col. Mike Andrews, declined to comment on whether Department of Defense officials were analyzing COVID-19 weaponization, but said its Chemical and Biological Defense program continues to support federal coronavirus countermeasures such as testing, vaccines and screening machines.

Scientists led by Nanyang Technological University, Singapore (NTU Singapore) have developed a novel method of using fruit peel waste to extract and reuse precious metals from spent lithium-ion batteries in order to create new batteries.

The team demonstrated their concept using orange peel, which recovered precious metals from battery efficiently. They then made functional batteries from these recovered metals, creating minimal waste in the process.

The scientists say that their waste-to-resource approach tackles both and electronics waste, supporting the development of a circular economy with zero waste, in which resources are kept in use for as long as possible. An estimated 1.3 billion tons of food waste and 50 million tons of e-waste are generated globally each year.

He claims that humans risk being overtaken by AI within the next five years, and that AI could eventually view us in the same way we currently view house pets.

“I don’t love the idea of being a house cat, but what’s the solution?” he said in 2016, just months before he founded Neuralink. “I think one of the solutions that seems maybe the best is to add an AI layer.”