Toggle light / dark theme

Viruses are tiny invaders that cause a wide range of diseases, from rabies to tomato spotted wilt virus and, most recently, COVID-19 in humans. But viruses can do more than elicit sickness — and not all viruses are tiny.

Large viruses, especially those in the nucleo-cytoplasmic large DNA virus family, can integrate their genome into that of their host — dramatically changing the genetic makeup of that organism. This family of DNA viruses, otherwise known as “giant” viruses, has been known within scientific circles for quite some time, but the extent to which they affect eukaryotic organisms has been shrouded in mystery — until now.

“Viruses play a central role in the evolution of life on Earth. One way that they shape the evolution of cellular life is through a process called endogenization, where they introduce new genomic material into their hosts. When a giant virus endogenizes into the genome of a host algae, it creates an enormous amount of raw material for evolution to work with,” said Frank Aylward, an assistant professor in the Department of Biological Sciences in the Virginia Tech College of Science and an affiliate of the Global Change Center housed in the Fralin Life Sciences Institute.

The first radio burst discovered in the Milky Way is now repeating as it travels from a magnetar – a neutron star with a strong magnetic field – 32,616 light-years away.

The initial flash of energy was first detected in April and scientist have identified two more, confirming fast radio bursts ‘are emitted by magnetars at cosmological distances.’

A team working with the Westerbrok Telescope in the Netherlands captured the signal, which came as two short bursts, each one millisecond long and 1.4 seconds apart.

Elon Musk’s SpaceX would like to further expanded testing of its Starlink satellite internet by connecting the network to aircraft.


SpaceX would like to further expand testing of its Starlink satellite internet by connecting the network to aircraft, the company revealed in a recent request to the Federal Communications Commission.

Elon Musk’s space company on Nov. 6 asked the FCC if SpaceX could add Starlink user terminals “on a Gulfstream jet for a period of up to two years.”

“SpaceX seeks experimental authority for operation of one user terminal aboard each of up to five private jets while they are on the ground at an airport, and in flight over the United States (including its territories and territorial waters),” the company wrote in the FCC filing.

For over a decade, theoretical physicists have predicted that the van Hove singularity of graphene could be associated with different exotic phases of matter, the most notable of which is chiral superconductivity.

A van Hove is essentially a non-smooth point in the density of states (DOS) of a crystalline solid. When reaches or is close to this specific energy level, a flat band develops in its electronic structure that can occupy an exceptionally large number of electrons. This leads to strong many-body interactions that promote or enable the existence of exotic states of matter.

So far, the exact degree to which the available energy levels of graphene need to be filled with electrons (i.e., “doped”) in order for individual phases to stabilize has been very difficult to determine using model calculations. Identifying or designing techniques that can be used to dope graphene to or beyond the van Hove singularity could ultimately lead to interesting observations related to exotic phases of matter, which could in turn pave the way towards the development of new graphene-based technology.