Toggle light / dark theme

For Dr. Cecily Morrison, research into how AI can help people who are blind or visually disabled is deeply personal. It’s not only that the Microsoft Principal Researcher has a 7-year-old son who is blind, she also believes that the powerful AI-related technologies that will help people must themselves be personal, tailored to the circumstances and abilities of the people they support.

We will see new AI techniques that will enable users to personalize experiences for themselves,” says Dr. Morrison, who is based at Microsoft Research Cambridge and whose work is centered on human-computer interaction and artificial intelligence. “Everyone is different. Having a disability label does not mean a person has the same needs as another with the same label. New techniques will allow people to teach AI technologies about their information needs with just a few examples in order to get a personalized experience suited to their particular needs. Tech will become about personal needs rather than disability labels.”

Dr. Cecily Morrison with her partner and two children, including her seven-year-old son who is holding his cane.

🤔 “The White House today detailed the establishment of 12 new research institutes focused on AI and quantum information science. Agencies including the National Science Foundation (NSF), U.S. Department of Homeland Security, and U.S. Department of Energy (DOE) have committed to investing tens of millions of dollars in centers intended to serve as nodes for AI and quantum computing study.

Laments over the AI talent shortage in the U.S. have become a familiar refrain. While higher education enrollment in AI-relevant fields like computer science has risen rapidly in recent years, few colleges have been able to meet student demand due to a lack of staffing. In June, the Trump administration imposed a ban on U.S. entry for workers on certain visas — including for high-skilled H-1B visa holders, an estimated 35% of whom have an AI-related degree — through the end of the year. And Trump has toyed with the idea of suspending the Optional Practical Training program, which allows international students to work for up to three years in the U.S.”


The White House announced the creation of AI and quantum research institutes funded by billions in venture and taxpayer dollars.

Researchers at the Fred Hutchinson Cancer Research Center in Seattle, USA, have used gene editing to remove latent herpes simplex virus 1 (HSV-1), also known as oral herpes.

In mice, the technique showed a 92% decrease in the latent virus – enough to keep the infection from coming back, according to the scientists. The study used two sets of “genetic scissors” to damage the virus’s DNA, fine-tune a delivery vehicle to the infected cells, and target the nerve pathways connecting the neck with the face, reaching the tissue where the virus lies dormant. The findings are published in Nature Communications.

“This is the first time that scientists have been able to go in and actually eliminate most of the herpes in a body,” said senior author Dr. Keith Jerome, Professor in the Vaccine and Infectious Disease Division at Fred Hutch. “We are targeting the root cause of the infection: the infected cells where the virus lies dormant and are the seeds that give rise to repeat infections.”

A comprehensive review of life as we know it—and may not know it.

In a new paper just published in the journal Universe, Louis Irwin and I attempt to sum up scientists’ current understanding of life “as we know it,” and speculate how life may look and function on alien planets and moons. That includes potential biospheres very different from our own, such as a rocky planet with an ice-covered global ocean. Or it might be a barren planet devoid of surface liquids, or a frigid world with abundant liquid hydrocarbons. It could even be a rogue planet with no “host” star, a tidally locked planet, or a so-called Super-Earth. Maybe the biosphere exists only in the planet’s atmosphere.

As a child, you develop a sense of what “fairness” means. It’s a concept that you learn early on as you come to terms with the world around you. Something either feels fair or it doesn’t.

But increasingly, algorithms have begun to arbitrate fairness for us. They decide who sees housing ads, who gets hired or fired, and even who gets sent to jail. Consequently, the people who create them—software engineers—are being asked to articulate what it means to be fair in their code. This is why regulators around the world are now grappling with a question: How can you mathematically quantify fairness?

This story attempts to offer an answer. And to do so, we need your help. We’re going to walk through a real algorithm, one used to decide who gets sent to jail, and ask you to tweak its various parameters to make its outcomes more fair. (Don’t worry—this won’t involve looking at code!)

Nearby supernova explosions shape the interstellar medium. Ejecta, containing fresh nucleosynthetic products, may traverse the solar system as a transient passage, or alternatively the solar system may traverse local clouds that may represent isolated remnants of supernova explosions. Such scenarios may modulate the galactic cosmic-ray flux intensity to which Earth is exposed. Varying conditions of the traversed interstellar medium could have impacts on climate and can be imprinted in the terrestrial geological record. Some radionuclides, such as 60 Fe, are not produced on Earth or within the solar system in significant quantities. Their existence in deep-sea sediments demonstrates recent production in close-by supernova explosions with a continued influx of 60 Fe until today.

Nuclides synthesized in massive stars are ejected into space via stellar winds and supernova explosions. The solar system (SS) moves through the interstellar medium and collects these nucleosynthesis products. One such product is 60 Fe, a radionuclide with a half-life of 2.6 My that is predominantly produced in massive stars and ejected in supernova explosions. Extraterrestrial 60 Fe has been found on Earth, suggesting close-by supernova explosions ∼2 to 3 and ∼6 Ma. Here, we report on the detection of a continuous interstellar 60 Fe influx on Earth over the past ∼33,000 y. This time period coincides with passage of our SS through such interstellar clouds, which have a significantly larger particle density compared to the local average interstellar medium embedding our SS for the past few million years. The interstellar 60 Fe was extracted from five deep-sea sediment samples and accelerator mass spectrometry was used for single-atom counting.

Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images. This technique, in combination with citizen science, is expected to yield further discoveries in the future.

A research group, consisting of astronomers mainly from the National Astronomical Observatory of Japan (NAOJ), applied a deep-learning technique, a type of AI, to classify galaxies in a large dataset of images obtained with the Subaru Telescope. Thanks to its high sensitivity, as many as 560,000 galaxies have been detected in the images. It would be extremely difficult to visually process this large number of galaxies one by one with human eyes for morphological classification. The AI enabled the team to perform the processing without human intervention.

Summary: Researchers have made an important discovery about the mechanisms behind learning and memory. Depending on the number of synapses, and their proximity, information is processed and stored differently.

Source: University of Montreal

How does our brain store information?

But Ford appears to have found a unique way to use a robot. We’ve seen some interesting applications for Boston Dynamics’ Spot robot, and the latest takes the 70-pound dog-like robot to the floors of a Ford transmission manufacturing plant.

These plants are reportedly so old — and have been re-tooled so many times — that Ford is unsure as to whether it possesses accurate floor plans. With an end goal of modernizing and retooling these plants, Ford is using Spot’s laser scanning and imaging technology to travel the plants so they can produce a detailed map.

According to TechCrunch, the manual facility mapping process is time-intensive, with lots of stops and starts as cameras are set up and repositioned station to station. By using two continuously roving robots, Ford can do the job in about half the time. The other benefit is Spot’s size: these little critters can access areas that humans can’t easily get to, and with five cameras they can sometimes provide a more complete picture of their surroundings.