Toggle light / dark theme

Watch a strange, sprouting mushroom reach out like an octopus … or the devil’s fingers.
➡ Subscribe: http://bit.ly/NatGeoSubscribe.

About National Geographic:
National Geographic is the world’s premium destination for science, exploration, and adventure. Through their world-class scientists, photographers, journalists, and filmmakers, Nat Geo gets you closer to the stories that matter and past the edge of what’s possible.

Get More National Geographic:
Official Site: http://bit.ly/NatGeoOfficialSite.
Facebook: http://bit.ly/FBNatGeo.
Twitter: http://bit.ly/NatGeoTwitter.
Instagram: http://bit.ly/NatGeoInsta.

Time-lapse video shows an octopus-like fungus bursting from its “egg.” Fittingly known as the octopus stinkhorn, or devils’s fingers, this mushroom spends much of its time underground. When it’s time to reproduce, it emerges and starts to ooze a spore-filled slime that attracts flies. The flies carry the spores away, helping the strange mushroom to spread far and wide.

My most recent article published in my LinkedIn profile. Opinions and thoughts are welcome.


Elon Musk has been warning for years of the risks that the progress in AI can pose to humanity. Long story short, his position is that AI, once it eventually becomes AGI, is going to be so advanced that it will make humans irrelevant.

In order to prevent this from happening, Elon Musk argues that a symbiosis between the human mind and AI is necessary, so that a sort of “Brain Computer Interface” or BCI allow humans direct communication with the cloud, and allow to process information at the speed that things are done in the cloud. Also, it would allow to limitlessly increase the scarce memory that our brains are capable of holding.

Elon argues that the interface with our mobiles and with PCs, as it requires the use of fingers, is chaotically slow and inefficient. Even if voice commands were much better than they are today, it would be still cumbersome compared with what would suppose being able to interact directly through our thougths.

For more than two decades, I have been working to improve several staple food crops in Africa, including bananas, plantains, cassavas and yams. As principal scientist and a plant biotechnologist at the International Institute for Tropical Agriculture in Nairobi, I aim to develop varieties that are resistant to pests and diseases such as bacterial wilt, Fusarium wilt (caused by the fungus F. oxysporum) and banana streak virus.

[Editor’s note: Abdullahi Tsanni is a freelance science journalist based in Abuja, Nigeria.]

In 2011, my team and I created a set of tools, the only one of its kind in Africa, for changing DNA sequences so that we could develop genetically modified and genome-edited products in sub-Saharan Africa. In 2018, we pioneered the first application of CRISPR gene-editing technology to deactivate banana streak virus in plantains. This technology overcame a major hurdle in banana breeding on the continent, and is the first reported successful use of genome editing to improve bananas.

The honeybee (Apis mellifera) is an important insect pollinator of wild flowers and crops, playing critical roles in the global ecosystem. Additionally, the honeybee serves as an ideal social insect model. Therefore, functional studies on honeybee genes are of great interest. However, until now, effective gene manipulation methods have not been available in honeybees. Here, we reported an improved CRISPR/Cas9 gene-editing method by microinjecting sgRNA and Cas9 protein into the region of zygote formation within 2 hr after queen oviposition, which allows one-step generation of biallelic knockout mutants in honeybee with high efficiency. We first targeted the Mrjp1 gene. Two batches of honeybee embryos were collected and injected with Mrjp1 sgRNA and Cas9 protein at the ventral cephalic side and the dorsal posterior side of the embryos, respectively. The gene-editing rate at the ventral cephalic side was 93.3%, which was much higher than that (11.8%) of the dorsal-posterior-side injection. To validate the high efficiency of our honeybee gene-editing system, we targeted another gene, Pax6, and injected Pax6 sgRNA and Cas9 protein at the ventral cephalic side in the third batch. A 100% editing rate was obtained. Sanger sequencing of the TA clones showed that 73.3% (for Mrjp1) and 76.9% (for Pax6) of the edited current-generation embryos were biallelic knockout mutants. These results suggest that the CRISPR/Cas9 method we established permits one-step biallelic knockout of target genes in honeybee embryos, thereby demonstrating an efficient application to functional studies of honeybee genes. It also provides a useful reference to gene editing in other insects with elongated eggs.