Toggle light / dark theme

Voicebots, humanoids and other tools capture memories for future generations.

What happens after we die—digitally, that is? In this documentary, WSJ’s Joanna Stern explores how technology can tell our stories for generations to come.

Old photos, letters and tapes. Tech has long allowed us to preserve memories of people long after they have died. But with new tools there are now interactive solutions, including memorialized online accounts, voice bots and even humanoid robots. WSJ’s Joanna Stern journeys across the world to test some of those for a young woman who is living on borrowed time. Photo illustration: Adele Morgan/The Wall Street Journal.

More from the Wall Street Journal:

San Francisco-area startup Astra became the latest U.S. rocket builder to reach space on Tuesday, with the successful launch of its Rocket 3.2 vehicle from Kodiak, Alaska.

The rocket came just shy of reaching orbit, with Astra CEO Chris Kemp telling reporters after the launch that the vehicle reached the target altitude of 390 kilometers but was “just a half a kilometer per second short” of the target orbital velocity.

“This far exceeded our team’s expectations,” Kemp said.

“When we actually opened it, I was speechless,” JAXA scientist Hirotaka Sawada said, as quoted by The Guardian. “It was more than we expected and there was so much that I was truly impressed.”

The quality of the sample was outstanding.

“It wasn’t fine particles like powder, but there were plenty of samples that measured several millimeters across,” Sawada added, according to The Guardian.

CSL’s Systems and Networking Research Group (SyNRG) is defining a new sub-area of mobile technology that they call “earable computing.” The team believes that earphones will be the next significant milestone in wearable devices, and that new hardware, software, and apps will all run on this platform.

“The leap from today’s earphones to ‘earables’ would mimic the transformation that we had seen from basic phones to smartphones,” said Romit Roy Choudhury, professor in electrical and (ECE). “Today’s smartphones are hardly a calling device anymore, much like how tomorrow’s earables will hardly be a smartphone accessory.”

Instead, the group believes tomorrow’s earphones will continuously sense , run acoustic augmented reality, have Alexa and Siri whisper just-in-time information, track user motion and health, and offer seamless security, among many other capabilities.

In a new study an international research team led by the University of Vienna has shown that structures built around a single layer of graphene allow for strong optical nonlinearities that can convert light. The team achieved this by using nanometer-sized gold ribbons to squeeze light, in the form of plasmons, into atomically-thin graphene. The results, which are published in Nature Nanotechnology are promising for a new family of ultra-small tunable nonlinear devices.

In the last years, a concerted effort has been made to develop plasmonic devices to manipulate and transmit through nanometer-sized devices. At the same time, it has been shown that nonlinear interactions can be greatly enhanced by using plasmons, which can arise when light interacts with electrons in a material. In a plasmon, light is bound to electrons on the surface of a conducting material, allowing plasmons to be much smaller than the light that originally created them. This can lead to extremely strong nonlinear interactions. However, plasmons are typically created on the surface of metals, which causes them to decay very quickly, limiting both the propagation length and nonlinear interactions. In this new work, the researchers show that the long lifetime of plasmons in and the strong nonlinearity of this material can overcome these challenges.

In their experiment, the research team led by Philip Walther at the University of Vienna (Austria), in collaboration with researchers from the Barcelona Institute of Photonic Sciences (Spain), the University of Southern Denmark, the University of Montpellier, and the Massachusetts Institute of Technology (USA) used stacks of two-dimensional materials, called heterostructures, to build up a nonlinear plasmonic device. They took a single atomic layer of graphene and deposited an array of metallic nanoribbons onto it. The metal ribbons magnified the incoming light in the graphene layer, converting it into graphene plasmons. These plasmons were then trapped under the gold nanoribbons, and produced light of different colors through a process known as harmonic generation. The scientists studied the generated light, and showed that, the nonlinear interaction between the graphene plasmons was crucial to describe the harmonic generation.

Google says that a “significant subset” of Gmail users ran into errors with the service Tuesday afternoon.

While users could access their inboxes, they may have encountered “error messages, high latency, and/or other unexpected behavior,” the company wrote in a message on its service status page. Google said the issues with Gmail were resolved at 6:51PM ET.

The errors came just a day after many Google properties, including Gmail, YouTube, and Google Docs, were hit with a widespread outage.

More than two-thirds of the energy used worldwide is ultimately ejected as “waste heat.” Within that reservoir of discarded energy lies a great and largely untapped opportunity, claim scientists in MIT’s Department of Nuclear Science and Engineering (NSE). As reported in a recent issue of Nature Communications, the MIT team—led by Assistant Professor Mingda Li, who heads NSE’s Quantum Matter Group—has achieved a breakthrough in thermoelectric generation, which offers a direct means of converting thermal energy, including waste heat, into electricity.

A , or difference, within a material such as a metal or semiconductor can, through a phenomenon known as the Seebeck effect, give rise to an that drives a current. “For many materials, the is too low to be useful,” explains NSE Research Scientist Fei Han. “Our goal is to find materials with conversion efficiencies high enough to make thermoelectric generation more practical.”

The efficiency of thermoelectric energy conversion is proportional to a material’s , electrical , and something called the “” squared; it is inversely proportional to the . Because efficiency goes up with temperature, most thermoelectric materials used today operate in the range of hundreds of degrees centigrade. “But in our lives, most of the stuff around us is at room temperature,” Han says. “That’s why we’re trying to discover new materials that work effectively at or below room temperature.”