Toggle light / dark theme

The crystalline solid BaTiS3 (barium titanium sulfide) is terrible at conducting heat, and it turns out that a wayward titanium atom that exists in two places at the same time is to blame.

The discovery, made by researchers from Caltech, USC, and the Department of Energy’s Oak Ridge National Laboratory (ORNL), was published on November 27 in the journal Nature Communications. It provides a fundamental atomic-level insight into an unusual thermal property that has been observed in several materials. The work is of particular interest to researchers who are exploring the potential use of crystalline solids with poor in thermoelectric applications, in which heat is directly converted into electric energy and vice versa.

“We have found that quantum mechanical effects can play a huge role in setting the thermal transport properties of materials even under familiar conditions like ,” says Austin Minnich, professor of mechanical engineering and applied physics at Caltech and co-corresponding author of the Nature Communications paper.

Researchers at Lancaster University have developed a new material that can store energy for months, and potentially years, at a time. The material can be activated by light, and then release the pent-up energy on demand in the form of heat.

The team started with a metal-organic framework (MOF), materials that are famous for being very porous and as such, having an extremely high surface area. That in turn allows them to hold onto large amounts of molecules, making them great for desalinating or filtering water, capturing carbon dioxide out of the air, or delivering drugs in the body.

For the new study, the Lancaster researchers tested out how well a MOF might be able to store energy. They started with a version of the material called a DMOF1, and loaded its pores with azobenzene molecules. This compound is excellent at absorbing light, which causes its molecules to physically change shape.

Future leather…may be made from fungus! Cool! 😃


Around five years ago, US companies MycoWorks and Ecovative invented and patented fungus-derived leather technologies. These technologies use the mushroom’s root-like structure, known as mycelium. When mycelium is grown on agricultural waste or sawdust, they produce a thick mat that can be treated to look like leather.

This natural biological process can be conducted anywhere since the roots are used and not the mushrooms. The process doesn’t need light; it turns waste into something useful and stores carbon by collecting it in the growing fungus.

Making fungi leather (or mycelium leather) is an overall significantly quicker process than traditional leather. It takes years to raise a cow to maturity, while going from a single spore to a finished fungi leather takes weeks.

Social media was abuzz Sunday after reports that an object emitting an intense light had been spotted falling from the skies above Japan in the early hours of the morning.

Supplied photo taken from video footage of a fireball seen in Gifu Prefecture, central Japan. (Kyodo)

The fireball, believed to be a bolide — a type of shooting star often compared to a full moon for its brightness — could be seen clearly from parts of western and central Japan.

This week, I had some amazing discussions with Navajo Nation Math Circle leaders — Dave Auckly and Henry Fowler. The idea of starting a math circle on Navajo land was initially brought up by a wonderful math educator and mathematician raised in Kazakhstan, Tatiana Shubin. Here is a small tribute to their efforts:


Project activities were launched in the Fall of 2012. A team of distinguished mathematicians from all over the US, as well as local teachers and community members, work together to run the outreach. Navajo Nation Math Circles present math in the context of Navajo culture, helping students develop their identity as true Navajo mathematicians. “We want to find kids who would not have discovered their talents without our project, to help them realize that they can change the world,” says Fowler. Having introduced Navajo children to the joy of mathematics, the project also yielded a book, Inspiring Mathematics: Lessons from the Navajo Nation Math Circles, which contain lesson plans, puzzles and activities, and other insights for parents and teachers to embrace.

An extension of Navajo Nation Math Circles is an annual two-week Baa Hózhó summer math camp at Navajo Technical University. “Baa Hózhó” means “balance and harmony,” tying together the ideas of mathematical equilibrium with the way of life embraced by Navajo people. The summer camp is widely popular with parents and children; the older students come back as counselors, making everyone feel like one big family. It is preceded by an annual student-run math festival in local schools across the Navajo Nation, where students share their passion for mathematics with families and friends.

Fowler’s ultimate goal is to create a Mathematical Research institute on Navajo land, where local and international researchers could exchange math ideas and study the best ways of teaching mathematics to Indigenous people, enriching worldwide mathematical sciences. Hopefully, the great strides in the Navajo Nation math education will encourage leading high-tech companies to support the rise of a new generation of diverse, talented and passionate Native American STEM professionals.

The Marine Corps is looking for industry sources to produce a man-portable system capable of launching swarms of kamikaze drones over contested battlefields, according to a new notice.

In a request for information published earlier this month, Marine Corps System Command detailed a fresh need for an “individually operated, man-portable, anti-materiel, anti-personnel ground-launched loitering munition system” for fielding to grunts in the coming years.

The so-called Organic Precision Fire-Infantry (OPF-I) capability will consist of a fresh infantry-operated system capable of launching drones that can conduct explosive strikes and are “capable of swarming” over a 20-kilometer range for up to an hour and a half, according to the notice.

It seems some countries are now switching to drone swarms.


From Syria to Libya to Nagorno-Karabakh, this new method of military offense has been brutally effective. We are witnessing a revolution in the history of warfare, one that is causing panic, particularly in Europe.

In an analysis written for the European Council on Foreign Relations, Gustav Gressel, a senior policy fellow, argues that the extensive (and successful) use of military drones by Azerbaijan in its recent conflict with Armenia over Nagorno-Karabakh holds “distinct lessons for how well Europe can defend itself.”

A trio of researchers at Johannes Kepler University has used artificial intelligence to improve thermal imaging camera searches of people lost in the woods. In their paper published in the journal Nature Machine Intelligence, David Schedl, Indrajit Kurmi and Oliver Bimber, describe how they applied a deep learning network to the problem of people lost in the woods and how well it worked.

When people become lost in forests, search and rescue experts use helicopters to fly over the area where they are most likely to be found. In addition to simply scanning the ground below, the researchers use binoculars and . It is hoped that such cameras will highlight differences in body temperature of people on the ground versus their surroundings making them easier to spot. Unfortunately, in some instances does not work as intended because of vegetation covering subsoil or the sun heating the trees to a temperature that is similar to the body temperature of the person that is lost. In this new effort, the researchers sought to overcome these problems by using a deep learning application to improve the images that are made.

The solution the team developed involved using an AI application to process multiple images of a given area. They compare it to using AI to process data from multiple radio telescopes. Doing so allows several telescopes to operate as a single large telescope. In like manner, the AI application they used allowed multiple thermal images taken from a helicopter (or drone) to create an image as if it were captured by a with a much larger lens. After processing, the images that were produced had a much higher depth of field—in them the tops of the trees appeared blurred while people on the ground became much more recognizable. To train the AI system, the researchers had to create their own database of images. They used drones to take pictures of volunteers on the ground in a wide variety of positions.