Toggle light / dark theme

Andrew Steele is a scientist, writer and presenter.

Ageing is a phenomenon we’re all familiar with and is completely taken for granted as a fact of reality, but do we have to accept.

Expect to learn why curing ageing might be easier than curing cancer and all other diseases, the unfortunate truth of fasting for longevity, why the next decade will be the most exciting for lifespan research and much more…

Sponsors:

They are as thin as a hair, only a hundred thousand times thinner—so-called two-dimensional materials, consisting of a single layer of atoms, have been booming in research for years. They became known to a wider audience when two Russian-British scientists were awarded the Nobel Prize in Physics in 2010 for the discovery of graphene, a building block of graphite. The special feature of such materials is that they possess novel properties that can only be explained with the help of the laws of quantum mechanics and that may be relevant for enhanced technologies. Researchers at the University of Bonn (Germany) have now used ultracold atoms to gain new insights into previously unknown quantum phenomena. They found out that the magnetic orders between two coupled thin films of atoms compete with each other. The study has been published in the journal Nature.

Quantum systems realize very unique states of matter originating from the world of nanostructures. They facilitate a wide variety of new technological applications, e.g. contributing to secure data encryption, introducing ever smaller and faster technical devices and even enabling the development of a quantum computer. In the future, such a computer could solve problems which conventional computers cannot solve at all or only over a long period of time.

How unusual quantum phenomena arise is still far from being fully understood. To shed light on this, a team of physicists led by Prof. Michael Köhl at the Matter and Light for Quantum Computing Cluster of Excellence at the University of Bonn are using so-called quantum simulators, which mimic the interaction of several quantum particles—something that cannot be done with conventional methods. Even state-of-the-art computer models cannot calculate complex processes such as magnetism and electricity down to the last detail.

Researchers at Paderborn University have developed a new method of distance measurement for systems such as GPS, which achieves more precise results than ever before. Using quantum physics, the team led by Leibniz Prize winner Professor Christine Silberhorn has successfully overcome the so-called resolution limit, which causes the ‘noise’ we may see in photos, for example. Their findings have just been published in the academic journal Physical Review X Quantum (PRX Quantum).

Physicist Dr. Benjamin Brecht explains the problem of the resolution limit: “In laser distance measurements a detector registers two light pulses of different intensities with a . The more precise the time measurement is, the more accurately the distance can be determined. Providing the time separation between the pulses is greater than the length of the pulses, this works well.” Problems arise, however, as Brecht explains, if the pulses overlap: “Then you can no longer measure the time difference using conventional methods. This is known as the ‘resolution limit’ and is a well-known effect in photos. Very small structures or textures can no longer be resolved. That’s the same problem—just with position rather than time.”

A further challenge, according to Brecht, is to determine the different intensities of two light pulses, simultaneously with their time difference and the arrival time. But this is exactly what the researchers have managed to do—” with quantum-limited precision,” adds Brecht. Working with partners from the Czech Republic and Spain, the Paderborn physicists were even able to measure these values when the pulses overlapped by 90 per cent. Brecht says: “This is far beyond the resolution limit. The precision of the measurement is 10000 times better. Using methods from quantum information theory, we can find new forms of measurement which overcome the limitations of established methods.”

Frias-Martinez says CloudBank has allowed her to stretch her research dollars and, as a result, improve the quality and scope of her analyses. “For example, we started to do some experiments with an AWS database and the costs were much higher than we had expected,” she explains. “We submitted a ticket to their helpdesk and they quickly responded” with a full explanation of expenses and some money-saving alternatives.

Going the last mile

CloudBank was created to serve NSF grantees, starting with those funded by select CISE programs who have requested cloud computing. That pool is now tiny by design, but Norman expects demand to increase rapidly once NSF begins to make awards from this year’s program solicitations, the first that include CloudBank as an option. CloudBank could also serve as a template for a far larger, national cloud computing resource, part of a massive scale-up in cloud computing and artificial intelligence outlined in a law passed by Congress last week.

Multi-domain operations, the Army’s future operating concept, requires autonomous agents with learning components to operate alongside the warfighter. New Army research reduces the unpredictability of current training reinforcement learning policies so that they are more practically applicable to physical systems, especially ground robots.

These learning components will permit to reason and adapt to changing battlefield conditions, said Army researcher Dr. Alec Koppel from the U.S. Army Combat Capabilities Development Command, now known as DEVCOM, Army Research Laboratory.

The underlying adaptation and re-planning mechanism consists of learning-based policies. Making these policies efficiently obtainable is critical to making the MDO operating concept a reality, he said.

The SN9 vehicle’s three engines lit up for about one second today (Jan. 6) at 5:07 p.m. EST (2200 GMT) during a static-fire test at SpaceX’s South Texas facilities, near the Gulf Coast village of Boca Chica.

Static fires, in which rocket engines blaze while a vehicle remains anchored to the ground, are a routine preflight checkout. And SN9 (“Serial No. 9”) will indeed get off the ground soon, if all goes according to plan: SpaceX is prepping the vehicle for a test flight that’s expected to be similar to the epic one made last month by its predecessor.