Toggle light / dark theme

In my last post, I talked about the idea of warp drive and whether it might one day be possible. Today I’ll talk about another faster-than-light trick: wormholes.

Wormholes are an old idea in general relativity. It’s based on work by Albert Einstein and Nathan Rosen, who tried to figure out how elementary particles might behave in curved spacetime. Their idea treated particle-antiparticle pairs as two ends of a spacetime tube.

This Einstein-Rosen Bridge would look like a black hole on one end, and an anti-black hole, or white hole, on the other end.

Facial tracker for your virtual avatar. 🙂


Wow! I just tried out the facial tracker from HTC Vive in Neos VR and I have to say it is next level! Can’t wait to see this become the standard in virtual real… See More.

The menagerie of bacterial and fungal species living among us is ever growing — and this is no exception in low-gravity environments, such as the International Space Station (ISS).

Researchers from the United States and India working with NASA have now discovered four strains of bacteria living in different places in the ISS – three of which were, until now, completely unknown to science.

Three of the four strains were isolated back in 2015 and 2016 – one was found on an overhead panel of the ISS research stations, the second was found in the Cupola, the third was found on the surface of the dining table; the fourth was found in an old HEPA filter returned to Earth in 2011.

GUANGZHOU, China — Baidu has raised money for its artificial intelligence (AI) semiconductor business at a valuation of $2 billion, a person familiar with the matter told CNBC.

It comes as the Chinese search giant looks to diversify its revenue streams.

The funding round was led by CPE, a Chinese asset management and private equity firm, the person said. Venture capital companies IDG and Legend Capital were also involved. A fund under Chinese investment company Oriza Holdings also participated in the round.

Summary: When the ventral tegmental area was stimulated, monkeys were better able to identify details associated with subconscious visual stimuli they were exposed to.

Source: KU Leuven.

Researchers uncovered for the first time what happens in animals’ brains when they learn from subconscious, visual stimuli. In time, this knowledge can lead to new treatments for a number of conditions.

The debate holds a special interest for neuroscientists; since computer programming has only been around for a few decades, the brain has not evolved any special region to handle it. It must be repurposing a region of the brain normally used for something else.

So late last year, neuroscientists in MIT tried to see what parts of the brain people use when dealing with computer programming. “The ability to interpret computer code is a remarkable cognitive skill that bears parallels to diverse cognitive domains, including general executive functions, math, logic, and language,” they wrote.

Since coding can be learned as an adult, they figured it must rely on some pre-existing cognitive system in our brains. Two brain systems seemed like likely candidates: either the brain’s language system, or the system that tackles complex cognitive tasks such as solving math problems or a crossword. The latter is known as the “multiple demand network.”