Toggle light / dark theme

Three years of underground robotics competitions culminate in a final event in September with $5 million in prize money.


The DARPA Subterranean Challenge Final Event is scheduled to take place at the Louisville Mega Cavern in Louisville, Kentucky, from September 21 to 23. We’ve followed SubT teams as they’ve explored their way through abandoned mines, unfinished nuclear reactors, and a variety of caves, and now everything comes together in one final course where the winner of the Systems Track will take home the $2 million first prize.

It’s a fitting reward for teams that have been solving some of the hardest problems in robotics, but winning isn’t going to be easy, and we’ll talk with SubT Program Manager Tim Chung about what we have to look forward to.

Since we haven’t talked about SubT in a little while (what with the unfortunate covid-related cancellation of the Systems Track Cave Circuit), here’s a quick refresher of where we are: the teams have made it through the Tunnel Circuit, the Urban Circuit, and a virtual version of the Cave Circuit, and some of them have been testing in caves of their own. The Final Event will include all of these environments, and the teams of robots will have 60 minutes to autonomously map the course, locating artifacts to score points. Since I’m not sure where on Earth there’s an underground location that combines tunnels and caves with urban structures, DARPA is going to have to get creative, and the location in which they’ve chosen to do that is Louisville, Kentucky.

Summary: A newly developed reparative hydrogel, which researchers are dubbing “brain glue”, protects against loss of brain tissue following a TBI and can aid in functional neural repair.

Source: University of Georgia.

At a cost of $38 billion a year, an estimated 5.3 million people are living with a permanent disability related to traumatic brain injury in the United States today, according to the Centers for Disease Control and Prevention. The physical, mental and financial toll of a TBI can be enormous, but new research from the University of Georgia provides promise.

A team of researchers at Shanghai Jiao Tong University, has found that the human hand can be used as a powerless infrared radiation (IR) source in multiple kinds of applications. In their paper published in Proceedings of the National Academy of Sciences, the group notes that the human hand naturally emits IR and they demonstrate that the radiation can be captured and used.

The emits light in the invisible IR range, including the hands. This source of radiation, the researchers noted, could potentially be captured and used in applications ranging from signal generation to encryption systems. They further noted that because the hand has multiple fingers, the IR that it emits could be considered to be multiplexed.

IR is a form of —its wavelengths are longer than those of , which is why humans cannot see them. Prior research has shown that the human body emits such radiation due to body heat. Electromagnetic radiation carries with it radiant energy, and its behavior is classified as both a quantum particle and a wave. Prior research has also shown that electromagnetic radiation can be used in a variety of applications, including microwaves, radios and medical imaging devices. And , in particular, enables night vision goggles, spectroscopy devices and used to treat burn victims. In this new effort, the researchers have found that the very small amount of IR emitted by the human hand is sufficient to use in various devices.

Two teams of researchers have independently found that there exists a certain type of graphene system where electrons freeze as the temperature rises. The first team, with members from Israel, the U.S. and Japan, found that placing one layer of graphene atop another and then twisting the one on top resulted in a graphene state in which the electrons would freeze as temperatures rose. And in attempting to explain what they observed, they discovered that the entropy of the near-insulating phase was approximately half of what would be expected from free-electron spins. The second team, with members from the U.S., Japan and Israel, found the same graphene system and in their investigation to understand their observations, they noted that a large magnetic moment arose in the insulator. Both teams have published their results in the journal Nature. Biao Lian with Princeton University has published a News and Views piece outlining the work by both teams in the same journal issue.

As temperatures around most substances rise, the particles they are made of are excited. This results in solids melting to liquids and liquids turning to a gas. This is explained by thermodynamics—higher temperatures lead to more , which is a description of disorder. In this new effort, both teams found an exception to this rule—a graphene system in which electrons freeze as the .

The graphene system was very simple. Both teams simply laid one sheet of on top of another and then twisted the top sheet very slightly. But it had to be twisted at what they describe as the “magic angle,” describing a twist of just 1 degree. The moiré pattern that resulted led to lower velocity of the electrons in the system, which in turn led to more resistance, bringing the system close to being an insulator.

:ooo.


In a small industrial park located nearly halfway between Los Angeles and San Diego, one company is claiming to have hit a milestone in the development of a new technology for generating power from nuclear fusion.

The twenty year old fusion energy technology developer TAE Technologies said its reactors could be operating at commercial scale by the end of the decade, thanks to its newfound ability to produce stable plasma at temperatures over 50 million degrees (nearly twice as hot as the sun),.

The promise of fusion energy, a near limitless energy source with few emissions and no carbon footprint, has been ten years out for the nearly seventy years since humanity first harnessed the power of nuclear energy. But a slew of companies including TAE, General Fusion, Commonwealth Fusion Systems and a host of others across North America and around the world are making rapid advancements that look to bring the technology from the realm of science fiction into the real world.

Find out how endocrine disrupting chemicals, like BPA, can render most men sterile by 2045. Learn about chemicals in our food that disrupt our immune system, about cancer causing chemical in hand sanitizers. See what these have to do with sperm counts falling. How do they affect wildlife, and food production. See what you can do about it!

Green Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your spring planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K

See the Special Deals at My Patriot Supply: www.PrepWithGreg.com.

Support freedom: FreedomRestorationFoundation.org.

“A new research study conducted by the Department of Psychiatry & Behavioral Sciences aims to evaluate how visual perception changes after taking psilocybin (aka ”magic mushrooms”) and how these changes relate to brain functions. We might learn how this drug could be used to treat certain mental health conditions. That is why it is essential to have more research to expand our knowledge base about the drug, psilocybin.

Our participants will be healthy adults from ages 25 to 65 years who have taken psilocybin previously. Study duration for participants will be 12 weeks. Over the course of 7 study visits, participants will undergo interviews, MRls, EEG, blood draws, and drug dosing sessions. Participants will be compensated after each visit.

Seawater is raising salt levels in coastal woodlands along the entire Atlantic Coastal Plain, from Maine to Florida. Huge swaths of contiguous forest are dying. They’re now known in the scientific community as “ghost forests.”


Trekking out to my research sites near North Carolina’s Alligator River National Wildlife Refuge, I slog through knee-deep water on a section of trail that is completely submerged. Permanent flooding has become commonplace on this low-lying peninsula, nestled behind North Carolina’s Outer Banks. The trees growing in the water are small and stunted. Many are dead.

Throughout coastal North Carolina, evidence of forest die-off is everywhere. Nearly every roadside ditch I pass while driving around the region is lined with dead or dying trees.

As an ecologist studying wetland response to sea level rise, I know this flooding is evidence that climate change is altering landscapes along the Atlantic coast. It’s emblematic of environmental changes that also threaten wildlife, ecosystems, and local farms and forestry businesses.