Toggle light / dark theme

Papers referenced in the video:

Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway:
https://pubmed.ncbi.nlm.nih.gov/32130883/

Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels:
https://pubmed.ncbi.nlm.nih.gov/27567458/

Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study:

Have you seen those plant trees instead of go to space memes recently? Well, aside from believing we can do both, I wanted to remind people what great things we use everyday due to the technological developments that the space race has spawned. Not least, the monitoring of illegal deforestation, but right through to better baby food, cleaner water and incredible digital cameras!! But that is not all, so here is my Top 10 technologies, that we have the space industry to thank for…

Excerpts from an interview with Dr. María Blasco, Director of the Spanish National Cancer Research Center (CNIO), where she covers how telomeres shortening induce aging, how artificially lenghtening telomeres has proven to extend lifespan in animal models like mice, and what the impact will be in human health and lifespan once the techniques (gene therapies) get effectively translated into humans.

The interview took place on May 6, 2021 as part of a program organized by the Madrid Planetarium, to contribute to a better orientation of the students of the last years of high school when deciding which university studies further engage.

The language used is not intended for an audience of scientists but rather accessible to all audiences.

The entire interview was made in Spanish but I ADDED S/T in ENGLISH FOR THE EXCERPTS SHOWN in this video.

Debris from an out-of-control Chinese rocket likely plunged into the Indian Ocean, just west of the Maldives, on Saturday night ET, China’s space agency said.

Most of the huge Long March 5B rocket, however, burned up on reentering the atmosphere, the China Manned Space Engineering Office said in a post on WeChat.

It was unclear if any debris had landed on the atoll nation.

I still don’t get how there seems to be No organized effort anywhere to achieve the ability to 3D print a perfect genetic match of all organs by 2025 — 2030. You would think some government somewhere would want to work round the clock on this.


NIBIB-funded engineers at the University of Buffalo have fine-tuned the use of stereolithography for 3D printing of organ models that contain live cells. The new technique is capable of printing the models 10–50 times faster than the industry standard-;in minutes instead of hours-; a major step in the quest to create 3D-printed replacement organs.

Conventional 3D printing involves the meticulous addition of material to the 3D model with a small needle that produces fine detail but is extremely slow —taking six or seven hours to print a model of a human part, such as a hand, for instance. The lengthy process causes cellular stress and injury inhibiting the ability to seed the tissues with live, functioning cells.

The method developed by the SUNY Buffalo group, led by Rougang Zhao, PhD, Associate Professor of Biomedical Engineering in the Jacobs School of Medicine & Biomedical Sciences, takes a different approach that minimizes damage to live cells. The rapid, cell friendly technique is a significant step towards creating printed tissues infused with large numbers of living cells.

We have everything we need here Especially in Texas no one ever needs to freeze again if they come out of the Fossil Fuel stone age.


The idea is that when electric vehicles are not in use, the energy stored in their batteries is going to waste. If you make it possible for that energy to feed back into the grid, then it can help balance out dips in supply as renewables go offline, rather than relying on fossil-fuel plants to pick up the slack.

The technology that can make that happen is still in its infancy, though. When an electric vehicle is charged, the alternating current from the grid is converted to direct current that can be stored in its batteries. But most charging stations and cars don’t have the hardware to allow this process to run in reverse, meaning the power can’t be fed back into the grid.

That’s starting to change, though, and a city in the Netherlands is leading the charge. In the last two years Utrecht has installed nearly 500 bi-directional charging stations and is positioning itself as one of the world’s leading test beds for the technology.

Blue Robotics, a leading developer of marine robotics systems and components, has partnered with Unmanned Systems Technology (“UST”) to demonstrate their expertise in this field. The ‘Silver’ profile highlights how their underwater ROVs (remotely operated vehicles), thrusters and accessories enable a wide range of missions for commercial, research and exploration applications.

The BlueROV2 is a high-performance, highly configurable ROV designed for underwater inspections, research and ocean exploring. With open-source hardware and software, the platform features an unprecedented level of flexibility and expandability, allowing users to easily make improvements and upgrades to take on a huge variety of missions down to depths of 100m (330 feet).

The ROV incorporates six Blue Robotics T200 thrusters in a vectored configuration, delivering excellent thrust-to-weight ratio and providing the ability to move precisely in any direction. The system can be expanded to eight thrusters via a Heavy Configuration Retrofit Kit, and features adjustable gain levels for precision control at extremely low speeds as well as high power to overcome currents and carry heavy loads. The BlueROV2 is provided with a Fathom ROV tether, with available length options from 25m (82 ft) up to 300 m (984 ft).