Toggle light / dark theme

**Low birth weight tied to accelerated aging in boys**

A study in Pediatrics found that boys who weigh less than 2 pounds at birth aged faster and were five years older biologically in their early 30s, compared with boys who were born at the same time but whose birth weights were normal. The findings were based on the genes of 45 individuals who were extremely low birth weight and those of 47 whose birth weights were normal.


MONDAY, May 17, 2021 (HealthDay News) — Boys who weigh less than 2 pounds at birth don’t age as well as their normal-weight peers, a long-term study finds.

Canadian researchers have followed a group of extremely low birth weight (ELBW) babies and their normal-weight counterparts since 1977.

The modern idea that nature is discrete originated in Ancient Greek atomism. Leucippus, Democritus and Epicurus all argued that nature was composed of what they called ἄτομος (átomos) or ‘indivisible individuals’. Nature was, for them, the totality of discrete atoms in motion. There was no creator god, no immortality of the soul, and nothing static (except for the immutable internal nature of the atoms themselves). Nature was atomic matter in motion and complex composition – no more, no less.

Despite its historical influence, however, atomism was eventually all but wiped out by Platonism, Aristotelianism and the Christian tradition that followed throughout the Middle Ages. Plato told his followers to destroy Democritus’ books whenever they found them, and later the Christian tradition made good on this demand. Today, nothing but a few short letters from Epicurus remain.

Atomism was not finished, however. It reemerged in 1417, when an Italian book-hunter named Poggio Bracciolini discovered a copy of an ancient poem in a remote monastery: De Rerum Natura (On the Nature of Things), written by Lucretius (c99–55 BCE), a Roman poet heavily influenced by Epicurus. This book-length philosophical poem in epic verse puts forward the most detailed and systematic account of ancient materialism that we’ve been fortunate enough to inherit. In it, Lucretius advances a breathtakingly bold theory on foundational issues in everything from physics to ethics, aesthetics, history, meteorology and religion. Against the wishes and best efforts of the Christian church, Bracciolini managed to get it into print, and it soon circulated across Europe.

On a good day, things exit through the anus. But in rodents and pigs in respiratory distress, oxygen can be absorbed by tissues in the rectum, helping the animals recover, a new study suggests. The scientists behind the research propose that flushing oxygen into the rectum could one day help save human lives if conventional ventilation methods are unavailable.

“It looks like a crazy idea,” says Sean Colgan, a gastroenterologist at the University of Colorado, Boulder, who was not involved in the study. “But if you look at the data, it’s actually a very compelling story.”

Most mammals breathe through their mouths and noses and send oxygen to their body via the lungs. A few aquatic animals, including sea cucumbers and catfish, breathe through their intestines, and the intestinal tissues of humans can readily absorb pharmaceuticals. But no one knew whether oxygen could enter the bloodstream via mammalian intestines.

Scientists said the findings indicated that the virus likely recently jumped from animals to humans, but stressed that additional studies are necessary.


Scientists have reportedly discovered a new kind of coronavirus that is believed to have originated in dogs – in what may be the eighth unique form of the bug known to cause disease in humans.

Researchers in a study published in the Clinical Infectious Diseases journal said their findings from patients hospitalized with pneumonia in 2017–2018 underscored the public health threat of animal coronaviruses, Reuters reported.

They said they had tested nasal swab samples taken from 301 pneumonia patients at a hospital in the east Malaysian state of Sarawak.

Most important part comes at 1:49 where Liza talks about gene therapies for people to stop people from aging, reaching homeostasis, or even exceeding it a little bit.


In this video Liz introduces BioViva Science and how the company works with its partners in delivering gene therapies.

Liz Parrish is the Founder and CEO of BioViva Sciences USA Inc. BioViva is committed to extending healthy lifespans using gene therapy. Liz is known as “the woman who wants to genetically engineer you,” she is a humanitarian, entrepreneur, author and innovator and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of gene therapy, she serves as a motivational speaker to the public at large for BioViva and the life sciences. She is actively involved in international educational media outreach and is a founding member of the International Longevity Alliance (ILA). She is the founder of the BioTrove Podcasts, found at iTunes, which is committed to offering a meaningful way for people to learn about current technologies. She is also a founding member of the American Longevity Alliance (ALA) a 501©(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular & regenerative medicine with the aim to get governments to consider aging a disease.

Our recent look at the possibility of technosignatures at Alpha Centauri is now supplemented with a new study on the detectability of artificial lights on Proxima Centauri b. The planet is in the habitable zone, roughly similar in mass to the Earth, and of course, it orbits the nearest star, making it a world we can hope to learn a great deal more about as new instruments come online. The James Webb Space Telescope is certainly one of these, but the new work also points to LUVOIR (Large UV/Optical/IR Surveyor), a multi-wavelength space-based observatory with possible launch in 2035.

Authors Elisa Tabor (Stanford University) and Avi Loeb (Harvard) point out that a (presumably) tidally locked planet with a permanent nightside would need artificial lighting to support a technological culture. As we saw in Brian Lacki’s presentation at Breakthrough Discuss (see Alpha Centauri and the Search for Technosignatures), coincident epochs for civilizations developing around neighboring stars are highly unlikely, making this the longest of longshots. On the other hand, a civilization arising elsewhere could be detectable through its artifacts on worlds it has chosen to study.

We learn by asking questions and looking at data. In this case, asking how we would detect artificial light on Proxima b involves factoring in the planet’s radius, which is on the order of 1.3 Earth radii (1.3 R) as well as that of Proxima Centauri itself, which is 0.14 that of the Sun (0.14 R). We also know the planet is in an 11 day orbit at 0.05 AU. Other factors influencing its lightcurve would be its albedo and orbital inclination. Tabor and Loeb use recent work on Proxima Centauri c’s inclination (citation below) to ballpark an orbital inclination for the inner world.