Toggle light / dark theme

Electromagnetic radiation of extremely high energies is produced not only in the jets launched from active nuclei of distant galaxies, but also in jet-launching objects lying within the Milky Way, called microquasars. This latest finding by scientists from the international High-Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) radically changes the previous understanding of the mechanisms responsible for the formation of ultra-high-energy and in practice marks a revolution in its further study.

Since the discovery of cosmic radiation by Victor Hess in 1912, astronomers have believed that the celestial bodies responsible in our galaxy for the acceleration of these particles up to the highest energies are the remains of gigantic supernova explosions, called supernova remnants.

However, a different picture comes from the latest data from the HAWC observatory: The sources of radiation of extremely high energies turn out to be microquasars. Astrophysicists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow played a key role in the discovery.

A powerful geomagnetic storm caused a spectacular display of light that was visible unusually far from Earth’s poles.

As solar cycle 25 reaches its peak, solar activity has increased significantly. This surge in activity was evident in October 2024 when a remarkable display of the aurora borealis, also known as the northern lights, extended to observers on the ground beyond the Arctic Circle to midlatitude regions.

Capturing the aurora from space and ground.

In the future, there could be a spacecraft capable of maneuvering with unprecedented speed and agility, without the constraints of limited fuel.

The U.S. Space Force has provided funding of $35 million to create a new spacecraft that can “maneuver without regret.”

The University of Michigan is leading a team of researchers and institutions to develop this advanced spacecraft.

A team from Lawrence Livermore National Laboratory, Stanford University and the University of Pennsylvania introduced a novel wet chemical etching process that modifies the surface of conventional metal powders used in 3D printing.


In a significant advancement for metal additive manufacturing, researchers at Lawrence Livermore National Laboratory (LLNL) and their academic partners have developed a groundbreaking technique that enhances the optical absorptivity of metal powders used in 3D printing.

The innovative approach, which involves creating nanoscale surface features on metal powders, promises to improve the efficiency and quality of printed metal parts, particularly for challenging materials like copper and tungsten, according to researchers.

Additive manufacturing (AM) — more commonly known as 3D printing — has transformed the way products are designed and produced, allowing for the creation of complex geometries and customized components that traditional manufacturing methods struggle to achieve. However, one of the persistent challenges in laser powder-bed fusion (LPBF) metal 3D printing is the high reflectivity of certain metals, which can lead to inefficient energy absorption during the printing process and can even damage some printing machines. This inefficiency often results in inadequate print quality and increased energy consumption, according to researchers.

“All right, so today we are going to dive deep into some cutting-edge tech,” a chatty American male voice says.


NotebookLM, which was originally marketed as a study tool, has taken a life of its own among users. The company is now working on adding more customization options, such as changing the length, format, voices, and languages, Martin said. Currently it’s supposed to generate podcasts only in English, but some users on Reddit managed to get the tool to create audio in French and Hungarian.

Yes, it’s cool—bordering on delightful, even—but it is also not immune from the problems that plague generative AI, such as hallucinations and bias.

Here are some of the main ways people are using NotebookLM so far.

A research team led by National Tsing Hua University Department of Physics and Center for Quantum Science and Technology professor Chuu Chih-sung (褚志崧) has developed Taiwan’s first and the world’s smallest quantum computer, using a single photon, the university said yesterday.

Chuu said in the…


Bringing taiwan to the world and the world to taiwan.

This study presents the development and characterization of a novel nanocomposite wound dressing material based on polylactic acid (PLA) nanofibers incorporating chitosan nanocapsules loaded with chamomile extract and cellulose nanoparticles.


Asadzadeh, F., Ghorbanzadeh, S., Poursattar Marjani, A. et al. Sci Rep 14, 22,336 (2024). https://doi.org/10.1038/s41598-024-72398-9

Download citation.