Toggle light / dark theme

Submillimeter galaxies (SMGs) are a class of the most luminous, distant, and rapidly star-forming galaxies known and can shine brighter than a trillion Suns (about one hundred times more luminous in total than the Milky Way). They are generally hard to detect in the visible, however, because most of their ultraviloet and optical light is absorbed by dust which in turn is heated and radiates at submillimeter wavelengths—the reason they are called submillimeter galaxies. The power source for these galaxies is thought to be high rates of star formation, as much as one thousand stars per year (in the Milky Way, the rate is more like one star per year). SMGs typically date from the early universe; they are so distant that their light has been traveling for over ten billion years, more than 70% of the lifetime of the universe, from the epoch about three billion years after the big bang. Because it takes time for them to have evolved, astronomers think that even a billion years earlier they probably were actively making stars and influencing their environments, but very little is known about this phase of their evolution.

SMGs have recently been identified in galaxy protoclusters, groups of dozens of galaxies in the universe when it was less than a few billion years old. Observing massive SMGs in these distant protoclusters provides crucial details for understanding both their early evolution and that of the larger structures to which they belong. CfA astronomers Emily Pass and Matt Ashby were members of a team that used infrared and from the Spitzer IRAC and Gemini-South instruments, respectively, to study a previosly identified protocluster, SPT2349-56, in the era only 1.4 billion years after the big bang. The protocluster was spotted by the South Pole Telescope millimeter wavelengths and then observed in more detail with Spitzer, Gemini, and the ALMA submillimeter array.

The protocluster contains a remarkable concentration of fourteen SMGs, nine of which were detected by these optical and infrared observations. The astronomers were then able to estimate the , ages, and gas content in these SMGs, as well as their star formation histories, a remarkable acheievment for such distant objects. Among other properties of the protocluster, the scientists deduce that its total mass is about one trillion solar-masses, and its galaxies are making stars in a manner similar to star formation processes in the current universe. They also conclude that the whole ensemble is probably in the midst of a colossal merger.

A new electrode that could free up 20% more light from organic light-emitting diodes has been developed at the University of Michigan. It could help extend the battery life of smartphones and laptops, or make next-gen televisions and displays much more energy efficient.

The approach prevents light from being trapped in the light-emitting part of an OLED, enabling OLEDs to maintain brightness while using less power. In addition, the electrode is easy to fit into existing processes for making OLED displays and light fixtures.

“With our approach, you can do it all in the same ,” said L. Jay Guo, U-M professor of electrical and computer engineering and corresponding author of the study.

The new system streamlines the process of fermenting plant sugar to fuel by helping yeast survive industrial toxins.

More corn is grown in the United States than any other crop, but we only use a small part of the plant for food and fuel production; once people have harvested the kernels, the inedible leaves, stalks and cobs are left over. If this plant matter, called corn stover, could be efficiently fermented into ethanol the way corn kernels are, stover could be a large-scale, renewable source of fuel.

“Stover is produced in huge amounts, on the scale of petroleum,” said Whitehead Institute Member and Massachusetts Institute of Technology (MIT) biology professor Gerald Fink. “But there are enormous technical challenges to using them cheaply to create biofuels and other important chemicals.”

NASA’s Perseverance rover captured a historic group selfie with the Ingenuity Mars Helicopter on April 6, 2021. But how was the selfie taken? Vandi Verma, Perseverance’s chief engineer for robotic operations at NASA’s Jet Propulsion Laboratory in Southern California breaks down the process in this video.

Video taken by Perseverance’s navigation cameras shows the rover’s robotic arm twisting and maneuvering to take the 62 images that compose the image. The rover’s entry, descent, and landing microphone captured the sound of the arm’s motors whirring during the process.

Selfies allow engineers to check wear and tear on the rover over time.

For more information on Perseverance, visit https://mars.nasa.gov/perseverance.

CRISPR gene editing already promises to fight diseases that were once thought unassailable, but techniques so far have required injecting the tools directly into affected cells. That’s not very practical for some conditions. However, there’s just been a breakthrough. NPR reports that researchers have published results showing that you can inject CRISPR-Cas9 into the bloodstream to make edits, opening the door to the use of gene editing for treating many common diseases.

The experimental treatment tackled a rare genetic disease, transthyretin amyloidosis. Scientists injected volunteers with CRISPR-loaded nanoparticles that were absorbed by the patients’ livers, editing a gene in the organ to disable production of a harmful protein. Levels of that protein plunged within weeks of the injection, saving patients from an illness that can rapidly destroy nerves and other tissues in their bodies.

The test involved just six people, and the research team still has to conduct long-term studies to check for possible negative effects. If this method proves viable on a large scale, though, it could be used to treat illnesses where existing CRISPR techniques aren’t practical, ranging from Alzheimer’s to heart disease.

Ut ohh.


The middle and working classes have seen a steady decline in their fortunes. Sending jobs to foreign countries, the hollowing out of the manufacturing sector, pivoting toward a service economy and the weakening of unions have been blamed for the challenges faced by a majority of Americans.

There’s an interesting, compelling and alternative explanation. According to a new academic research study, automation technology has been the primary driver in U.S. income inequality over the past 40 years. The report, published by the National Bureau of Economic Research, claims that 50% to 70% of changes in U.S. wages, since 1980, can be attributed to wage declines among blue-collar workers who were replaced or degraded by automation.

When an 87-year-old Californian man was wheeled into an operating room just outside Phoenix last year, the pandemic was at its height and medical protocols were being upended across the country.

A case like his would normally have required 14 or more bags of fluids to be pumped into him, but now that posed a problem.

Had he been infected with the coronavirus, tiny aerosol droplets could have escaped and infected staff, so the operating team had adopted new procedures that reduced the effectiveness of the treatment but used fewer liquids.

A new space race is now underway.


In both cases, the language is an attempt to call forth the spirit of the Outer Space Treaty. However, as many critics have stated, the Artemis Accords suffer from the fact that they are tied to a specific space agency and program. This was certainly the basis of Rogozin and Russia’s resistance when the Accords were first announced, hence why Russia and China have come together to do the same.

In short, they have decided to establish a set of bilateral agreements that would allow others to participate in their program of lunar exploration. While it’s not clear what the long-term implications of this will be, it could possibly lead to tensions and territorial disputes down the road. After all, one of the hallmarks of the current era of space exploration is its plurality, where multiple space agencies (and commercial space) are involved instead of two competing superpowers.

Neil deGrasse Tyson explains the early state of our Universe. At the beginning of the universe, ordinary space and time developed out of a primeval state, where all matter and energy of the entire visible universe was contained in a hot, dense point called a gravitational singularity. A billionth the size of a nuclear particle.

While we can not imagine the entirety of the visible universe being a billion times smaller than a nuclear particle, that shouldn’t deter us from wondering about the early state of our universe. However, dealing with such extreme scales is immensely counter-intuitive and our evolved brains and senses have no capacity to grasp the depths of reality in the beginning of cosmic time. Therefore, scientists develop mathematical frameworks to describe the early universe.

Neil deGrasse Tyson also mentions that our senses are not necessarily the best tools to use in science when uncovering the mysteries of the Universe.

It is interesting to note that in the early Universe, high densities and heterogeneous conditions could have led sufficiently dense regions to undergo gravitational collapse, forming black holes. These types of Primordial black holes are hypothesized to have formed soon after the Big Bang. Going from one mystery to the next, some evidence suggests a possible Link Between Primordial Black Holes and Dark Matter.