Toggle light / dark theme

Four planets locked in a perfect rhythm around a nearby star are destined to be pinballed around their solar system when their sun eventually dies, according to a study led by the University of Warwick that peers into its future.

Astronomers have modeled how the change in gravitational forces in the system as a result of the star becoming a white dwarf will cause its planets to fly loose from their orbits and bounce off each other’s gravity, like balls bouncing off a bumper in a game of pinball.

In the process, they will knock nearby debris into their dying sun, offering scientists new insight into how the white dwarfs with polluted atmospheres that we see today originally evolved. The conclusions by astronomers from the University of Warwick and the University of Exeter are published in the Monthly Notices of the Royal Astronomical Society.

The formula for launching a machine learning company in health care looks something like this: Build a model, test it on historical patient data in a computer lab, and then start selling it to hospitals nationwide.

Suchi Saria, director of the machine learning and health care lab at Johns Hopkins University, is taking a different approach. Her company, Bayesian Health, is coming out of stealth mode on Monday by publishing a prospective study on how one of its lead products — an early warning system for sepsis — impacted the care of current patients in real hospitals.