Toggle light / dark theme

Over the years, deep learning has required an ever-growing number of these multiply-and-accumulate operations. Consider LeNet, a pioneering deep neural network, designed to do image classification. In 1998 it was shown to outperform other machine techniques for recognizing handwritten letters and numerals. But by 2012 AlexNet, a neural network that crunched through about 1600 times as many multiply-and-accumulate operations as LeNet, was able to recognize thousands of different types of objects in images.

Advancing from LeNet’s initial success to AlexNet required almost 11 doublings of computing performance. During the 14 years that took, Moore’s law provided much of that increase. The challenge has been to keep this trend going now that Moore’s law is running out of steam. The usual solution is simply to throw more computing resources—along with time, money, and energy—at the problem.

As a result, training today’s large neural networks often has a significant environmental footprint. One 2019 study found, for example, that training a certain deep neural network for natural-language processing produced five times the CO2 emissions typically associated with driving an automobile over its lifetime.

Particle accelerators are hugely important in the study of the matter of the Universe, but the ones we think of tend to be gigantic instruments – surrounding cities in some cases. Now scientists have made a much smaller version to power an advanced laser, a setup that could be just as useful as its larger counterparts.

The particle accelerator in question is a plasma wakefield accelerator, which generates short and intense bursts of electrons, and the laser it’s powering is what’s known as a free-electron laser (FEL), which uses its light to analyze atoms, molecules, and condensed matter in incredibly high resolutions.

While this scenario has been tried before, the resulting laser light hasn’t been intense enough to be useful at smaller scales. Here, the researchers were able to keep the setup enclosed in few normal-sized rooms while amplifying the final electron beam produced by the laser, increasing the intensity by 100 times in the last step of the process.

“I am used to being harassed online. But this was different,” she added. “It was as if someone had entered my home, my bedroom, my bathroom. I felt so unsafe and traumatized.”

Oueiss is one of several high-profile female journalists and activists who have allegedly been targeted and harassed by authoritarian regimes in the Middle East through hack-and-leak attacks using the Pegasus spyware, created by Israeli surveillance technology company NSO Group. The spyware transforms a phone into a surveillance device, activating microphones and cameras and exporting files without a user knowing.

Up, up, and away.

Launching satellites is an expensive business — at least for now. But satellites are necessary in astronomy for one major reason — they get telescopes above the atmosphere.


Launching satellites is an expensive business – at least for now. But satellites are necessary in astronomy for getting telescopes above the atmosphere.

The monumental entrance gate of the Zeus Temple’s sanctuary in the ancient city of Aizanoi, located in the Çavdarhisar district of western Kütahya province, Turkey, was unearthed during recent excavations.

Excavations are being carried out by the Kütahya Museum Directorate in the ancient city, which was included in the UNESCO World Heritage Tentative List in 2012 and is 50 kilometers (31 miles) away from the city center. The excavation coordinator, the head of Dumlupınar University (DPU) archeology department professor Gökhan Coşkun, told Anadolu Agency (AA) that the ancient city’s history dates back to about 5000 years.

Rising life expectancy and falling birth rates mean the world’s average person is getting older. It also means they will be working a lot longer. How people cope with this reality will be vital to the global economy, and perhaps an historic opportunity to rethink the future of work.

Presented by Intuit.

#FutureOfWork #PersonalFinance #BloombergQuicktake.
——-
Like this video? Subscribe: https://www.youtube.com/Bloomberg?sub_confirmation=1
Become a Quicktake Member for exclusive perks: https://www.youtube.com/bloomberg/join.

QuickTake Originals is Bloomberg’s official premium video channel. We bring you insights and analysis from business, science, and technology experts who are shaping our future. We’re home to Hello World, Giant Leap, Storylines, and the series powering CityLab, Bloomberg Businessweek, Bloomberg Green, and much more.

“I suspect the French side is wondering whether the fuel rod damage is caused by something that they can directly address by modifying the equipment design, the water chemistry around the fuel, the plant operating procedures, or maybe even the fuel fabrication process to ensure that this doesn’t happen in other plants that are based on the Taishan design,” Fishman said.


Developer could be trying to find source of fuel rod damage to alter design in the future, analyst says.

Over six decades of integrated circuit production we’ve become used to their extreme reliability and performance for a very reasonable price. But what about those first integrated circuits from the early 1960s? Commercial integrated circuits appeared in 1961, and recently Texas Instruments published a fascinating retrospective on the development of their first few digital ICs.

TI’s original IC product on the market was the SN502, a transistor flip-flop that debuted at $450 (about $4100 today), which caught the interest of NASA engineers who asked for logic functions with a higher performance level. The response was the development of the 51 series of logic chips, whose innovation included on-chip interconnects replacing the hand interconnects of the SN502. Their RCTL logic gave enough performance and reliability for NASA to use, and in late 1963 the Explorer 18 craft carried a telemetry system using the SN510 and SN514 chips into orbit. 52 and 53 series chips quickly followed, then in 1964 the 54 series TTL chips which along with their plastic-encapsulated 74 series equivalents are still available today.

Considering that in 1961 the bleeding edge of integrated circuit logic technology was a two-transistor chip with hand interconnects, it seems scarcely conceivable that by ten years later in 1971 the art had advanced to the point at which the first commercially available microprocessors would be produced. It’s unlikely that many of us will stumble upon any of the three-figure SN1-series logic chips, but to read about them is a fascinating reminder of this pivotal moment in the history of electronics.