Toggle light / dark theme

Summary: A new hydrogel that acts as a gateway to transfer stem cells into the brain and facilitate repair to damaged tissue may effectively treat neurological conditions like Parkinson’s disease and stroke.

Source: Australian National University

Researchers from The Australian National University (ANU), in collaboration with The Florey Institute of Neuroscience and Mental Health, have developed a new type of hydrogel that could radically transform how we treat Parkinson’s disease.

The gel also offers hope for patients who have suffered from other neurological conditions such as strokes.

You can get 50% off your first month of ANY crate by going to http://kiwico.com/Integza50.

Follow me on Instagram: https://www.instagram.com/integzaa/
Tree Killer: @I did a thing.

Virtual Foundry.
Getting Started Bundle: https://bit.ly/3BYEF1h.
Printing and sintering instructions: https://bit.ly/3iauNtl.
General shop: https://bit.ly/3ye5PPt.

Ruby Nozzle: https://olssonruby.com/

Summary: Blood tests revealed specific epigenetic biomarkers for schizophrenia. Researchers applied machine learning to analyze the CoRSIVs region of the human genome to identify the schizophrenia biomarkers. Testing the model with an independent data set revealed the AI technology can detect schizophrenia with 80% accuracy.

Source: Baylor College of Medicine.

An innovative strategy that analyzes a region of the genome offers the possibility of early diagnosis of schizophrenia, reports a team led by researchers at Baylor College of Medicine. The strategy applied a machine learning algorithm called SPLS-DA to analyze specific regions of the human genome called CoRSIVs, hoping to reveal epigenetic markers for the condition.

Private sector solutions to major social problems — stephanie smith — director, humanitarian & development, mastercard.


Stephanie Smith is a Director, in the Humanitarian & Development group, at Mastercard (https://www.mastercard.us), the American multinational financial services corporation.

Stephanie is responsible for operations of the Humanitarian & Development group at Mastercard, and ensuring the team’s efficient, consistent, and effective delivery against their vision to provide digital tools and access for education, health, commerce, and other critical services for marginalized individuals and communities. The Humanitarian & Development group is focused on driving commercially sustainable social impact in collaboration with governments, NGOs, and other private sector companies.

Jeep and Dodge are putting a much bigger focus on electrification now that they’re part of the Stellantis group. Jeep plans to release its first series-produced electric vehicle in 2023, and Dodge said its first plug-in hybrid will land in 2022.

Both models appeared on a product roadmap that Stellantis distributed to investors this month. It focuses on electrified vehicles, so it doesn’t list the upcoming non-electrified launches, and it sheds light on what the future has in store for all of the carmaker’s brands. Specific details like the type of car planned weren’t publicly released, so there’s no official word on what Jeep’s first EV will look like, but our crystal ball reveals two likely possibilities.

One is a production version of the Magneto concept (pictured) introduced earlier in 2021. It’s essentially a current-generation Wrangler powered by an electric motor that spins the four wheels via a six-speed manual transmission and a two-speed transfer case. It’s futuristic but not unrealistic, so we wouldn’t be surprised to see it reach showrooms in the coming years. However, another possibility is that Jeep could build a smaller, likely car-derived EV to sell on the European market, where emissions norms are extraordinary strict and the fines for exceeding them are immense. If that’s the case, the model would likely borrow parts from the Stellantis parts bin.

Polymer semiconductors—materials that have been made soft and stretchy but still able to conduct electricity—hold promise for future electronics that can be integrated within the body, including disease detectors and health monitors.

Yet until now, scientists and engineers have been unable to give these polymers certain advanced features, like the ability to sense biochemicals, without disrupting their functionality altogether.

Researchers at the Pritzker School of Molecular Engineering (PME) have developed a new strategy to overcome that limitation. Called “click-to-polymer” or CLIP, this approach uses a chemical reaction to attach new functional units onto .