Jul 23, 2021
AI firm DeepMind puts database of the building blocks of life online
Posted by Kelvin Dafiaghor in category: robotics/AI
AlphaFold program’s prediction of nearly 20000 human protein structures now free for researchers.
AlphaFold program’s prediction of nearly 20000 human protein structures now free for researchers.
In March 2017, Read and his Penn State colleague David Kennedy published a paper in the Proceedings of the Royal Society B in which they outlined several strategies that vaccine developers could use to ensure that future vaccines don’t get punked by evolutionary forces. One overarching recommendation is that vaccines should induce immune responses against multiple targets. A number of successful, seemingly evolution-proof vaccines already work this way: After people get inoculated with a tetanus shot, for example, their blood contains 100 types of unique antibodies, all of which fight the bacteria in different ways. In such a situation, it becomes much harder for a pathogen to accumulate all the changes needed to survive. It also helps if vaccines target all the known subpopulations of a particular pathogen, not just the most common or dangerous ones. Richard Malley and other researchers at Boston Children’s Hospital are, for instance, trying to develop a universal pneumococcal vaccine that is not serotype-specific.
Vaccines should also bar pathogens from replicating and transmitting inside inoculated hosts. One of the reasons that vaccine resistance is less of a problem than antibiotic resistance, Read and Kennedy posit, is that antibiotics tend to be given after an infection has already taken hold — when the pathogen population inside the host is already large and genetically diverse and might include mutants that can resist the drug’s effects. Most vaccines, on the other hand, are administered before infection and limit replication, which minimizes evolutionary opportunities.
But the most crucial need right now is for vaccine scientists to recognize the relevance of evolutionary biology to their field. Last month, when more than 1000 vaccine scientists gathered in Washington, D.C., at the World Vaccine Congress, the issue of vaccine-induced evolution was not the focus of any scientific sessions. Part of the problem, Read says, is that researchers are afraid: They’re nervous to talk about and call attention to potential evolutionary effects because they fear that doing so might fuel more fear and distrust of vaccines by the public — even though the goal is, of course, to ensure long-term vaccine success. Still, he and Kennedy feel researchers are starting to recognize the need to include evolution in the conversation. “I think the scientific community is becoming increasingly aware that vaccine resistance is a real risk,” Kennedy said.
The Science of Aliens, Part IV: Would they have blood (implying a circulatory system) and if so, what color would it be?
Not every animal bleeds red, even on Earth.
Summary: A new study found a person’s math ability was linked to levels of GABA and glutamate in the brain. In children, greater math fluency was associated with higher GABA levels in the left intraparietal sulcus, while lower levels of GABA were linked to math ability in adults. The reverse was true for glutamate in both children and adults.
Source: PLOS
The neurotransmitters GABA and glutamate have complementary roles — GABA inhibits neurons, while glutamate makes them more active.
“What is exciting about this is that although our study was only in mice, the same mechanism should operate in humans – the molecules and structures in the human brain are the same as those in rodents,” says Fawcett. “This suggests that it may be possible to prevent humans from developing memory loss in old age.”
An intriguing new study from researchers in the United Kingdom is proposing an innovative method to treat age-related memory loss. The preclinical research shows memory decline in aging mice can be reversed by manipulating the composition of structures in the brain known as perineuronal nets.
Perineuronal nets (PNNs) are structures in the brain that envelop certain subsets of neurons, helping stabilize synaptic activity. They essentially put the brakes on the neuroplasticity seen in the first few years of life.
Continue reading “Preclinical study finds success in reversing age-related memory loss” »
GPUs up to 12-inches in size are supported.
Intel has revealed its new NUC 11 Extreme, which features its 11th generation CPUs and enough space for a full-size graphics card. It’s a miniature computer that should have enough horsepower to handle modern AAA games.
Truly bendable devices pave the way for the Internet of Everything.
Researchers have shown that it is possible to use plastics to create a working Arm microprocessor, creating a new world for truly flexible electronics spanning multiple sectors.
Large space structures, such as telescopes and spacecraft, should ideally be assembled directly in space, as they are difficult or impossible to launch from Earth as a single piece. In several cases, however, assembling these technologies manually in space is either highly expensive or unfeasible.
In recent years, roboticists have thus been trying to develop systems that could be used to automatically assemble structures in space. To simplify this assembly process, space structures could have a modular design, which essentially means that they are comprised of different building blocks or modules that can be shifted to create different shapes or forms.
Researchers at the German Aerospace Center (DLR) and Technische Universität München (TUM) have recently developed an autonomous planner that could be used to assemble reconfigurable structures directly in space. This system, introduced in a paper presented at the 2021 IEEE Aerospace Conference, could allow aerospace engineers and astronauts to assemble large structures in space and adapt them for specific use cases, reconfiguring them when necessary.
Nature always finds a way…so they say! But it looks like it may actually be true in the case of our global plastic waste dilemma. Genetic mutations have been discovered in specific natural bacteria that enable them to break the polymer chains of certain plastics. Where have we found these bacteria? Well…in plastic recycling dumps of course. So, gloves and masks on everyone. We’re going in!
Video Transcripts available at our website.
http://www.justhaveathink.com.
Continue reading “Nature has learnt how to eat our plastic!” »
In partnership with EMBL-EBI, we’re incredibly proud to be launching the AlphaFold Protein Structure Database.